
Introduction to
Computer Vision

Instructors: Jean Ponce and Matthew Trager

jean.ponce@inria.fr, matthew.trager@cims.nyu.edu

TAs: Jiachen (Jason) Zhu and Sahar Siddiqui

jiachen.zhu@nyu.edu, ss12414@nyu.edu

mailto:jean.ponce@inria.fr
mailto:matthew.trager@cims.nyu.edu
mailto:jiachen.zhu@nyu.edu
mailto:ss12414@nyu.edu

Topics

• Brief intro to MRF, graph cuts, and segmentation.

• Introduction to visual geometry, single-view geometry,
image stitching.

Probabilistic Graphical Models
A graphical model is a collection of probability
distributions that can be associated with a graph.

Directed Graphical Models
Bayesian Networks

Undirected Graphical Models
Markov Random Fields

Nodes Random variables↔

Graph reachability (In)dependence of r.v.↔

Markov Random Fields

• undirected graph
• random variables
• If is the set of cliques of , then

G = (V, E)
{Ys}s∈V

𝒞 G

p (y1, y2, …, ym) =
1
Z ∏

C∈𝒞

ψC (yC)

1

2 3

4

5

variables associated
with a clique cpartition constant Z = ∑

yi

∏
c∈𝒞

ψC(yc)

Binary image segmentation

Nodes correspond
to pixels

Edges define
neighborhood grid

Each node is a binary r.v. (background/forground).

Conditional Markov Random Fields

• observed random variables
• random variables
• If is the set of cliques of , then

X
{Ys}s∈V

𝒞 G

p (y1, …, yn |X) =
1

Z(X) ∏
C∈𝒞

ψC (yC; X)

variables associated
with a clique c

partition function Z(X) = ∑
yi

∏
c∈𝒞

ψC(yc; X)

Segmentation

• are observed variables (pixel values)

• are unknown labels.
• We would like to solve the Maximum a

Posteriori (MAP) problem:

xi
yi ∈ {−1,1}

Y⋆ = argmax
Y∈𝒴

P(Y |X)

Maximum a Posteriori (MAP) inference

Y⋆ = argmax
Y∈𝒴

P(Y |X)

= argmax
Y∈𝒴

1
Z(X) ∏

c

ψc (Yc; X)

= argmax
Y∈𝒴

log (1
Z(X) ∏

c

ψc (Yc; X))
= argmax

Y∈𝒴 ∑
c

log ψc (Yc; X) − log Z(X)

= argmax
Y∈𝒴 ∑

c

log ψc (Yc; X)
−E(Y; X)

Maximum a Posteriori (MAP) inference

Y⋆ = argmax
Y∈𝒴

P(Y |X) = argmax
Y∈𝒴 ∑

c

log ψc (Yc; X) = argmin
Y∈𝒴

E(Y; X)

MAP inference Energy minimization↔

The energy function is

E(Y; X) = ∑
c∈𝒞

ϕ(Yc; X)

where .ϕ(Yc; X) = − log ψ(Yc, X)

Segmentation

• are observed variables (pixel values)

• are unknown labels.

• are functions the pixel
with foreground and background
models.

• is a non-negative symmetric
function that compares two pixels ,e.g.,

.

xi
yi ∈ {−1,1}
df(xi), db(xi) xi

B(xi, xj)

k1 + k2 exp(−∥xi − xj∥2)

E(Y; X) =
1
2 ∑

i

df (xi) (1 + yi) + db (xi) (1 − yi) + ∑
i

∑
j∈𝒩(i)

B (xi, xj) (1 − yiyj)

Energy minimization problem

• We need to solve a discrete optimization problem:

• For general MRF, many strategies (belief propagation,
simulated annealing, etc.) but the problem is NP-hard.

• In the case of binary segmentation, the problem reduces
computing a minimizing cut in a graph, which can be solved in
polynomial time.

min
Y∈{0,1}N

E(Y; X)

Min-Cut problem
• Let be a graph with two special nodes and .
• A cut of is a partition of into disjoint subsets and

such that .
• The cut set is .
• Given a cost function , we wish to minimize the

cost of the cut:

G = (V, E) s t
G V S T

s ∈ S, t ∈ T
C(S, T) = {(v, w) ∈ E | v ∈ S, w ∈ T}

c : E → ℝ+

ℰ(S, T) = ∑
(v,w)∈C(S,T)

c(v, w)

s

t

Graph cuts for segmentation

E(Y; X) =
1
2 ∑

i

df (xi) (1 + yi) + db (xi) (1 − yi) + ∑
i

∑
j∈𝒩(i)

B (xi, xj) (1 − yiyj)
Section 9.4 Segmentation, Clustering, and Graphs 283

S

D

S

D

d

B

d

B

edge weight case

(i, j) B(pi,pj) i, j, neighbors

(S → i)
K
0

df (i)

p ∈ F
p ∈ B

otherwise

(i → D)
K
0

db(i)

p ∈ B
p ∈ F

otherwise

FIGURE 9.23: On the left, a graph derived from an image to set up foreground/background
segmentation as a graph cut problem. We interpret pixels linked to the source (S) as
foreground pixels, and pixels linked to the drain (D) as background pixels. Some pixels—
whose labels are known—are linked to only one of the two, and to their neighbors. Link
weights are given in the table. The links between neighbors have the same capacity in each
direction, which is why they are drawn without a direction. On the right, a cut of that
graph (edges that have been cut are grayed out). Notice that each pixel is linked to either
the foreground or to the background, but not to both (because otherwise we would not
have disconnected S and D) or to neither (because we could restore one of the two edges
and get a cut with a better value). Furthermore, the sum of weights of cut edges is equal
to the energy cost function. As a result, we can segment the image into foreground and
background by solving for the minimum cost cut. With the weights shown in the table, the
value of a cut on the graph is the same as the value of the energy function, as long as the
cut does not cut both (S → i) and (i → D), and K = 1 + maxp∈I

∑

q:{p,q}∈N B(p, q).

A minimum cut will not cut both, because a better cut will cut only one; this means that
the energy function in the text can be minimized by cutting the graph.

specialized algorithms are now very fast at cutting graphs from images.
This procedure gives us one way to deal with the problem of Section 6.3.2.

Here we had a hole in an image and a patch that matched the hole; but the patch
typically is square, and the hole typically is not. Place the patch over the hole. For
some pixels we know only one value (those inside the hole, and those outside the
patch), but for others we know two values. For these, we would like to choose which
pixel appears in the final image. Again, we have a combinatorial problem. Write δi
for a variable that takes the value −1 if the ith pixel in the final image should come
from the patch, and 1 otherwise. Write U for the pixels that could take either label,
P for the pixels that can take values only from the patch, and I for the pixels that
can take values only from the image. We do not have a foreground or background
model. Generally, we would like pixels to have a δ that agrees with their neighbors.
When two neighboring pixels have different δ values (i.e., at a point where we cut

•

• if label unknown, otherwise or .

• if label unknown, otherwise or .

c(i, j) = B(xi, xj)
c(s, i) = df(xi) 0 ∞
c(j, t) = db(xj) 0 ∞

t t

Application: GrabCut
• User provides a bounding box for fg/bg model.
• Algorithm iteratively applies graph cut to re-estimate

region statistics.

Rother, Kolmogorov, and Blake (2004)

Summary

• MRF are a useful tool in computer vision (segmentation, but also
stereo, pose estimation…)

• The MAP inference problem is a discrete optimization problem that
can be NP-hard.

• For segmentation, reduces to graph min-cut which can be solved
efficiently.

Other references:
- Book on graphical models: Koller and Friedman 2009
- Concise online lecture notes by Stefano Ermon
- Classic paper: What Energy Functions can be Minimized via Graph Cuts?

(Kolmogorov and Zabih)

https://ermongroup.github.io/cs228-notes/
https://www.cs.cornell.edu/~rdz/Papers/KZ-PAMI04.pdf

Visual Geometry
• What can we say about the 3D world from pictures?

- Using one picture, many ambiguities

http://en.wikipedia.org/wiki/Ames_room

Visual Geometry
• What can we say about the 3D world from 2D pictures?

- Using one picture, many ambiguities

Images from S. Lazebnik

Why the ambiguity?
• Structure and depth are ambiguous from single views.

Optical center

P1
P2

P1’=P2’

What cues help us to perceive 3d shape and depth?

If stereo were critical for depth
perception, navigation, recognition,
etc., then this would be a problem

Source J. Hays

Shading

[Figure from Prados & Faugeras 2006]
Source J. Hays

Texture

[From A.M. Loh. The recovery of 3-D structure using visual texture patterns. PhD thesis]
Source J. Hays

http://www.csse.uwa.edu.au/~angie/thesis.pdf

Focus/defocus

[figs from H. Jin and P. Favaro, 2002]

Images from
same point of
view, different
camera
parameters

3d shape / depth
estimates

Occlusion

Rene Magritt'e famous
painting Le Blanc-Seing,
1965

Source J. Hays

Perspective effects

Image credit: S. Seitz

Motion

Figures from L. Zhang

3D reconstruction

• Typically 3D reconstruction is computed from multiple
photographs.

– Humans (usually) can use one view but it’s very difficult.
– Reconstructing from many views and unknown camera

locations is still difficult!
– Many variations: structure-from-motion, multi-view stereo,

etc.

3D reconstruction from Internet photos

BigSFM, Snavely at al. (2013)

Problems in visual geometry
• Camera calibration: use 3D-2D corrs
• Structure-from-motion: use 2D-2D corrs
• (Multi-view) stereo: use motion and images to create

3D model
• “Shape from X”: use Shading, Texture, Focus

scene point

optical center

image plane

Multi-view geometry problems
• Given projections of the same 3D points in two or more

images, compute the unknown camera parameters and
3D coordinates of the points

Camera 3
R3,t3 Slide credit:

Noah Snavely

?

Camera 1
Camera 2R1,t1 R2,t2

What is preserved in images?

• Distances?
– no!

• Parallelism
– no!

• Angles?
– no!

• Collinearity?
– Yes!

Projective Geometry
Projective geometry is a classical topic in mathematics.
Like Euclidean geometry but with:
- Points at infinity: where parallel lines meet.
- Projective transformations: maps that preserve lines but not

angles and distances.

Emerged from the study of perspectivity
in the Renaissaince.

Vanishing points are
images of points at infinity.

Angles and distances
are not preserved in
images.

Projective Geometry
The -dimensional projective space is defined as

where if with . Equivalence classes of
vectors are “projective points”.
Concretely: represent points with homogeneous coordinates!

n ℙn

ℙn = (ℝn+1∖{0})/ ∼ ,

v ∼ w v = λw λ ∈ ℝ∖{0}

- Affine space can be mapped into projective space: .

- “Points at infinity” are extra points: .

- No projective notion of parallelism: in a projective plane (), lines
always intersect.

- Projective transformations (“homographies”) are linear transformations on
homogeneous coordinates. Bigger group of transformations than affine
maps!

x ∈ ℝn ↦ [x; 1] ∈ ℙn

[x; 0] ∈ ℙn

n = 2

• From Euclidean to homogeneous coordinates in 2D:

• From Euclidean to homogeneous coordinates in 3D:

Euclidean to Homogeneous coordinates

• From homogeneous to Euclidean coordinates in 2D:

• From homogeneous to Euclidean coordinates in 3D:

Homogeneous to Euclidean coordinates

Point at infinity in the direction

Point at infinity in the direction

(for non-zero vectors)

Homogeneous coordinates
• Two set of coordinates that differ by a multiplicative

constant denote the same cartesian vector.

Point in Cartesian is ray in Homogeneous

3D transformations and homogeneous coordinates

Vanishing points and lines
 Parallel lines in the world intersect in the image at a

“vanishing point”

How can we measure the size of 3D objects from an
image?

Slide by Steve Seitz
39

Perspective cues
Slide by Steve Seitz

40

Perspective cues
Slide by Steve Seitz

41

Perspective cues
Slide by Steve Seitz

42

Vanishing points and lines

oVanishing Point o
Vanishing Point

Vanishing
Line

Measuring height

1

2

3

4

5
5.3

2.8
3.3
Camera height

Source J. Hays

Measuring height without a ruler

Source J. Hays

RH

vz

r

b

t

H

b0

t0

vvx vy

vanishing line (horizon)

Source J. Hays

Examples

A. Criminisi, I. Reid, and A. Zisserman, Single View Metrology, IJCV 2000
 Figure from UPenn CIS580 slides

Source S. Lazebnik

http://dhoiem.cs.illinois.edu/courses/vision_spring10/sources/criminisi00.pdf
http://cis.upenn.edu/~cis580/Spring2015/Lectures/cis580-04-singleview.pdf

Another example
• Are the heights of the two groups of people

consistent with one another?
• Measure heights using Christ as reference

Piero della Francesca, Flagellation, ca. 1455

A. Criminisi, M. Kemp, and A. Zisserman,Bringing Pictorial Space to Life: computer techniques for the analysis of
paintings,  

Proc. Computers and the History of Art, 2002
Source S. Lazebnik

http://research.microsoft.com/apps/pubs/default.aspx?id=67260
http://research.microsoft.com/apps/pubs/default.aspx?id=67260
http://research.microsoft.com/apps/pubs/default.aspx?id=67260
http://research.microsoft.com/apps/pubs/default.aspx?id=67260

 Which is higher – the camera or the man in the
parachute?

Source J. Hays

Measurements on planes

1 2 3 4

1

2

3

4

Approach: unwarp then measure
What kind of warp is this?

Source S. Lazebnik

Image rectification

To unwarp (rectify) an image
• solve for homography H given p and p′
– how many points are necessary to solve for H?

p
p′

Source S. Lazebnik

Image rectification: example

Piero della Francesca, Flagellation, ca. 1455

Source S. Lazebnik

Application: 3D modeling from a single image

A. Criminisi, M. Kemp, and A. Zisserman,Bringing Pictorial Space to Life: computer techniques for the analysis of
paintings,  

Proc. Computers and the History of Art, 2002
Source S. Lazebnik

http://research.microsoft.com/apps/pubs/default.aspx?id=67260
http://research.microsoft.com/apps/pubs/default.aspx?id=67260
http://research.microsoft.com/apps/pubs/default.aspx?id=67260
http://research.microsoft.com/apps/pubs/default.aspx?id=67260

Application: 3D modeling from a single image

J. Vermeer, Music Lesson, 1662

A. Criminisi, M. Kemp, and A. Zisserman,Bringing Pictorial Space to Life: computer techniques for the analysis of
paintings,  

Proc. Computers and the History of Art, 2002
Source S. Lazebnik

http://research.microsoft.com/apps/pubs/default.aspx?id=67260
http://research.microsoft.com/apps/pubs/default.aspx?id=67260
http://research.microsoft.com/apps/pubs/default.aspx?id=67260
http://research.microsoft.com/apps/pubs/default.aspx?id=67260

Pinhole cameras again

Camera
Center
(0, 0, 0)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

Z
Y
X

P.

.
. f Z

Y

⎥
⎦

⎤
⎢
⎣

⎡
=
V
U

p

.
V

U

Pinhole cameras again

Camera
Center
(0, 0, 0)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

Z
Y
X

P.

.
. f Z

Y

⎥
⎦

⎤
⎢
⎣

⎡
=
V
U

p

.
V

U

U = f
X
Z

V = f
Y
Z

[
U
V
1] =

f 0 0 0
0 f 0 0
0 0 1 0

X
Y
Z
1

Pinhole cameras again

U = f
X
Z

+ px

V = f
Y
Z

+ py
[

U
V
1] =

f 0 px 0
0 f py 0
0 0 1 0

X
Y
Z
1

=
f 0 px

0 f py

0 0 p1

[Id |0]
X
Y
Z
1

Kprincipal point offset

Camera
Center
(0, 0, 0)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

Z
Y
X

P.

.
. f Z

Y

⎥
⎦

⎤
⎢
⎣

⎡
=
V
U

p

.
V

U

(px, py)

Pinhole cameras again

[
U
V
1] = K [Id |0]

Xcam

Ycam

Zcam

1

= K[R | t]

X
Y
Z
1

Pcam = RP + t

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

Z
Y
X

P.

.
. f Z

Y

⎥
⎦

⎤
⎢
⎣

⎡
=
V
U

p

.
V

U

world frame

Pinhole camera model

• 11 total parameters: 5 intrinsic + 6 extrinsic
• is a 3x4 matrix
• Fact: is a valid camera iff left 3x3 block is

invertible.
• Projective camera model: 3x4 matrix of full rank.

M = K[R | t]
M ∈ ℝ3×4

[
u
v
1] ∼

α s u0

0 β v0

0 0 1

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz

x
y
z
1

K [R | t]

Geometry of pinhole cameras

• The viewing lines associated
with a pinhole camera all
pass through the pinhole.

• The retinal plane (and image
coordinates) are less
important than the pinhole.

• The recorded lines form a
two-dimensional family.

Exotic cameras
• A camera is a machine that records light and creates

2D picture of a 3D world.
• It “samples” a two-dimensional set of lines.

“Two-slit camera”

Thinking in projective space
• It is often convenient to “forget” that the world is

Euclidean (simplifies calculations and removes
assumptions).

• Projective reconstruction yields parameters of
and 3D reconstruction up to projective transformations.

• To “upgrade” a transformation, we need the camera’s
internal parameters (matrix).

M ∈ ℝ3×4

K

Hartley Zisserman 04

Calibration from vanishing points
• Consider a scene with three orthogonal vanishing

directions:

• Note: v1, v2 are finite vanishing points and v3 is an
infinite vanishing point

v2v1.

v3

.

Calibration from vanishing points
• Consider a scene with three orthogonal vanishing

directions:

• We can align the world coordinate system with these
directions

v2v1.

v3

.

Calibration from vanishing points
• Let us align the world coordinate system with three

orthogonal vanishing directions in the scene:

• Each pair of vanishing points gives us a constraint on
the focal length and principal point.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

1
0
0

,
0
1
0

,
0
0
1

321 eee [] i
i

ii KRe
e

tRKv =⎥
⎦

⎤
⎢
⎣

⎡
=

0
|λ

0,1 == −
j

T
ii

T
ii eevKRe λ

011 == −−−−
j

TT
ij

TTT
i vKKvvKRRKv

Single-view geometry summary

• Projective geometry is a natural language for vision
(angles and distances not preserved in images).

• Vanishing points are projections of points at infinity.

• Pinhole camera model is simpler in projective setting.

• Orthogonal vanishing points can be used to recover
calibration matrix.

Image Stitching
• Combine two or more overlapping images to

make one larger image

Add example

Slide credit: Vaibhav Vaish

http://robots.stanford.edu/cs223b07/notes/CS223B-L11-Panoramas.ppt

Illustration

Camera Center
Following slides from D. Hoiem

Problem set-up
• x = K [R t] X
• x' = K' [R' t'] X
• t=t'=0

• x'=Hx where H = K' R' R-1 K-1
• Typically only R and f will change (4

parameters), but, in general, H has 8 parameters

f f'

.

x

x'

X

Image Stitching Algorithm Overview

1. Detect keypoints (e.g., SIFT)
2. Match keypoints (e.g., 1st/2nd NN < thresh)
3. Estimate homography with four matched keypoints

(using RANSAC)
4. Combine images

Computing homography
 Assume we have four matched points: How do we

compute the homography H?

Direct Linear Transformation (DLT)

0h =⎥
⎦

⎤
⎢
⎣

⎡
ʹʹʹ−−−

ʹʹʹ−−−

vvvvuvu
uuvuuvu

1000
0001

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

987

654

321

hhh
hhh
hhh

H

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

9

8

7

6

5

4

3

2

1

h
h
h
h
h
h
h
h
h

h

x′� ∼ Hx x = [
u
v
1] x′� = [

u′�
v′�
1]

Computing homography
Direct Linear Transform

• Apply SVD: UDVT = A
• h = Vsmallest (column of V corr. to smallest singular value)

Computing homography
• Assume we have four matched points: How do

we compute homography H?

Normalized DLT
1. Normalize coordinates for each image

a) Translate for zero mean
b) Scale so that average distance to origin is ~sqrt(2)

– This makes problem better behaved numerically (see
HZ p. 107-108)

2. Compute using DLT in normalized
coordinates

3. Unnormalize:

Txx =~ xTx ʹʹ=ʹ~

THTH ~1−ʹ=
ii Hxx =ʹ

H~

Computing homography
• Assume we have matched points with outliers: How

do we compute homography H?

Automatic Homography Estimation with RANSAC
1. Choose number of samples N
2. Choose 4 random potential matches
3. Compute H using normalized DLT
4. Project points from x to x’ for each potentially

matching pair:
5. Count points with projected distance < t

– E.g., t = 3 pixels
6. Repeat steps 2-5 N times

– Choose H with most inliers

HZ Tutorial ‘99

ii Hxx =ʹ

http://users.cecs.anu.edu.au/~hartley/Papers/CVPR99-tutorial/tut_4up.pdf

Automatic Image Stitching

1. Compute interest points on each image

2. Find candidate matches

3. Estimate homography H using matched points
and RANSAC with normalized DLT

4. Project each image onto the same surface and
blend

RANSAC for Homography

Initial Matched Points

RANSAC for Homography

Final Matched Points

RANSAC for Homography

Choosing a Projection Surface
 Many to choose: planar, cylindrical, spherical, etc.

Planar Mapping

f f

x

x

1) For red image: pixels are already on the planar surface
2) For green image: map to first image plane

Planar Projection

Planar

Photos by Russ Hewett

Planar Projection

Planar

Cylindrical Mapping

f
f

x
x

1) For red image: compute h, theta on cylindrical surface from (u, v)
2) For green image: map to first image plane, than map to cylindrical surface

Cylindrical Projection

Cylindrical

Cylindrical Projection

Cylindrical

Planar

Cylindrical

Recognizing Panoramas

Brown and Lowe 2003, 2007Some of following material from Brown and Lowe 2003 talk

Recognizing Panoramas
Input: N images
1. Extract SIFT points, descriptors from all images
2. Find K-nearest neighbors for each point (K=4)
3. For each image

a) Select m candidate matching images by
counting matched keypoints (m=6)

b) Solve homography Hij for each matched image

Recognizing Panoramas
Input: N images
1. Extract SIFT points, descriptors from all images
2. Find K-nearest neighbors for each point (K=4)
3. For each image

a) Select m candidate matching images by
counting matched keypoints (m=6)

b) Solve homography Hij for each matched image
c) Decide if match is valid (ni > 8 + 0.3 nf)

inliers
keypoints in
overlapping area

Recognizing Panoramas (cont.)
(now we have matched pairs of images)
4. Find connected components

Finding the panoramas

Finding the panoramas

Recognizing Panoramas (cont.)
(now we have matched pairs of images)
4. Find connected components
5. For each connected component

a) Perform bundle adjustment to solve for rotation
(θ1, θ2, θ3) and focal length f of all cameras

b) Project to a surface (plane, cylinder, or sphere)
c) Render with multiband blending

Bundle adjustment for stitching

• Non-linear minimization of re-projection error

• where H = K’ R’ R-1 K-1

• Solve non-linear least squares (Levenberg-Marquardt
algorithm)
– See paper for details

)ˆ,(
1
∑∑∑ ʹʹ=
N M

j k

i

disterror xx

Hxx =ʹˆ

Bundle Adjustment
• New images initialised with rotation, focal length of

best matching image

Bundle Adjustment
• New images initialised with rotation, focal length of

best matching image

Straightening
• Rectify images so that “up” is vertical

Details to make it look good

• Choosing seams
• Blending

Choosing seams

Image 1

Image 2

x x

im1 im2

• Easy method
– Assign each pixel to image with nearest center

Choosing seams
• Easy method

– Assign each pixel to image with nearest center
– Create a mask:

• mask(y, x) = 1 iff pixel should come from im1

– Smooth boundaries (called “feathering”):
• mask_sm = imfilter(mask, gausfil)

– Composite
• imblend = im1_c.*mask + im2_c.*(1-mask)

Image 1

Image 2

x x

im1 im2

Gain compensation
• Simple gain adjustment

– Compute average RGB intensity of each image in
overlapping region

– Normalize intensities by ratio of averages

Multi-band Blending
• Burt & Adelson 1983

– Blend frequency bands over range ∝ λ

Multiband blending

1. Compute Laplacian pyramid of
images and mask

2. Create blended image at each
level of pyramid

3. Reconstruct complete image

Laplacian pyramids

At low frequencies, blend slowly
At high frequencies, blend quickly

Blending comparison (IJCV 2007)

Blending Comparison

Further reading
• DLT algorithm: HZ p. 91 (alg 4.2), p. 585
• Normalization: HZ p. 107-109 (alg 4.2)
• RANSAC: HZ Sec 4.7, p. 123, alg 4.6

• Rick Szeliski’s alignment/stitching tutorial
• Recognising Panoramas: Brown and Lowe, IJCV 2007

(also bundle adjustment)

http://www.caam.rice.edu/~zhang/caam699/p-files/Im-Align2005.pdf
http://www.caam.rice.edu/~zhang/caam699/p-files/Im-Align2005.pdf
http://cvlab.epfl.ch/~brown/papers/ijcv2007.pdf
http://cvlab.epfl.ch/~brown/papers/ijcv2007.pdf

Stitching summary
• Homography relates rotating cameras

• Recover homography using RANSAC and normalized
DLT

• Bundle adjustment (global optimization) minimizes
reprojection error for set of related images

• Details to make it look nice (blending).

Next class

• Stereo and epipolar geometry

