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Topics

• Brief intro to MRF, graph cuts, and segmentation. 

• Introduction to visual geometry, single-view geometry, 
image stitching.



Probabilistic Graphical Models
A graphical model is a collection of probability 
distributions that can be associated with a graph. 

Directed Graphical Models 
Bayesian Networks

Undirected Graphical Models 
Markov Random Fields

Nodes  Random variables↔

Graph reachability  (In)dependence of r.v.↔



Markov Random Fields

•  undirected graph 
•   random variables 
• If  is the set of cliques of , then 

G = (V, E)
{Ys}s∈V

𝒞 G

p (y1, y2, …, ym) =
1
Z ∏

C∈𝒞

ψC (yC)

1

2 3

4

5

variables associated 
with a clique cpartition constant Z = ∑

yi

∏
c∈𝒞

ψC(yc)



Binary image segmentation

Nodes correspond 
to pixels

Edges define 
neighborhood grid

Each node is a binary r.v. (background/forground).



Conditional Markov Random Fields

•  observed random variables 
•   random variables 
• If  is the set of cliques of , then

X
{Ys}s∈V

𝒞 G

p (y1, …, yn |X) =
1

Z(X) ∏
C∈𝒞

ψC (yC; X)

variables associated 
with a clique c

partition function Z(X) = ∑
yi

∏
c∈𝒞

ψC(yc; X)



Segmentation

•  are observed variables (pixel values) 

•  are unknown labels. 
• We would like to solve the Maximum a 

Posteriori (MAP) problem:

xi
yi ∈ {−1,1}

Y⋆ = argmax
Y∈𝒴

P(Y |X)



Maximum a Posteriori (MAP) inference

Y⋆ = argmax
Y∈𝒴

P(Y |X)

= argmax
Y∈𝒴

1
Z(X) ∏

c

ψc (Yc; X)

= argmax
Y∈𝒴

log ( 1
Z(X) ∏

c

ψc (Yc; X))
= argmax

Y∈𝒴 ∑
c

log ψc (Yc; X) − log Z(X)

= argmax
Y∈𝒴 ∑

c

log ψc (Yc; X)
−E(Y; X)



Maximum a Posteriori (MAP) inference

Y⋆ = argmax
Y∈𝒴

P(Y |X) = argmax
Y∈𝒴 ∑

c

log ψc (Yc; X) = argmin
Y∈𝒴

E(Y; X)

MAP inference  Energy minimization↔

The energy function is

E(Y; X) = ∑
c∈𝒞

ϕ(Yc; X)

where .ϕ(Yc; X) = − log ψ(Yc, X)



Segmentation

•  are observed variables (pixel values) 

•  are unknown labels. 

•  are functions the pixel  
with foreground and background 
models. 

•  is a non-negative symmetric 
function that compares two pixels ,e.g., 

.

xi
yi ∈ {−1,1}
df(xi), db(xi) xi

B(xi, xj)

k1 + k2 exp( −∥xi − xj∥2)

E(Y; X) =
1
2 ∑

i

df (xi) (1 + yi) + db (xi) (1 − yi) + ∑
i

∑
j∈𝒩(i)

B (xi, xj) (1 − yiyj)



Energy minimization  problem

• We need to solve a discrete optimization problem: 

• For general MRF, many strategies (belief propagation, 
simulated annealing, etc.) but the problem is NP-hard. 

• In the case of binary segmentation, the problem reduces 
computing a minimizing cut in a graph, which can be solved in 
polynomial time.

min
Y∈{0,1}N

E(Y; X)



Min-Cut problem
• Let  be a graph with two special nodes  and . 
• A cut of  is a partition of  into disjoint subsets  and  

such that . 
• The cut set is . 
• Given a cost function , we wish to minimize the 

cost of the cut:

G = (V, E) s t
G V S T

s ∈ S, t ∈ T
C(S, T) = {(v, w) ∈ E | v ∈ S, w ∈ T}

c : E → ℝ+

ℰ(S, T ) = ∑
(v,w)∈C(S,T)

c(v, w)

s

t



Graph cuts for segmentation

E(Y; X) =
1
2 ∑

i

df (xi) (1 + yi) + db (xi) (1 − yi) + ∑
i

∑
j∈𝒩(i)

B (xi, xj) (1 − yiyj)
Section 9.4 Segmentation, Clustering, and Graphs 283
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edge weight case

(i, j) B(pi,pj) i, j, neighbors

(S → i)
K
0

df (i)

p ∈ F
p ∈ B

otherwise

(i → D)
K
0

db(i)

p ∈ B
p ∈ F

otherwise

FIGURE 9.23: On the left, a graph derived from an image to set up foreground/background
segmentation as a graph cut problem. We interpret pixels linked to the source (S) as
foreground pixels, and pixels linked to the drain (D) as background pixels. Some pixels—
whose labels are known—are linked to only one of the two, and to their neighbors. Link
weights are given in the table. The links between neighbors have the same capacity in each
direction, which is why they are drawn without a direction. On the right, a cut of that
graph (edges that have been cut are grayed out). Notice that each pixel is linked to either
the foreground or to the background, but not to both (because otherwise we would not
have disconnected S and D) or to neither (because we could restore one of the two edges
and get a cut with a better value). Furthermore, the sum of weights of cut edges is equal
to the energy cost function. As a result, we can segment the image into foreground and
background by solving for the minimum cost cut. With the weights shown in the table, the
value of a cut on the graph is the same as the value of the energy function, as long as the
cut does not cut both (S → i) and (i → D), and K = 1 + maxp∈I

∑

q:{p,q}∈N B(p, q).

A minimum cut will not cut both, because a better cut will cut only one; this means that
the energy function in the text can be minimized by cutting the graph.

specialized algorithms are now very fast at cutting graphs from images.
This procedure gives us one way to deal with the problem of Section 6.3.2.

Here we had a hole in an image and a patch that matched the hole; but the patch
typically is square, and the hole typically is not. Place the patch over the hole. For
some pixels we know only one value (those inside the hole, and those outside the
patch), but for others we know two values. For these, we would like to choose which
pixel appears in the final image. Again, we have a combinatorial problem. Write δi
for a variable that takes the value −1 if the ith pixel in the final image should come
from the patch, and 1 otherwise. Write U for the pixels that could take either label,
P for the pixels that can take values only from the patch, and I for the pixels that
can take values only from the image. We do not have a foreground or background
model. Generally, we would like pixels to have a δ that agrees with their neighbors.
When two neighboring pixels have different δ values (i.e., at a point where we cut

•  

•  if label unknown, otherwise  or . 

•  if label unknown, otherwise  or .

c(i, j) = B(xi, xj)
c(s, i) = df(xi) 0 ∞
c( j, t) = db(xj) 0 ∞

t t



Application: GrabCut
• User provides a bounding box for fg/bg model. 
• Algorithm iteratively applies graph cut to re-estimate 

region statistics.

Rother, Kolmogorov, and Blake (2004)



Summary

• MRF are a useful tool in computer vision (segmentation, but also 
stereo, pose estimation…) 

• The MAP inference problem is a discrete optimization problem that 
can be NP-hard. 

• For segmentation, reduces to graph min-cut which can be solved 
efficiently. 

Other references: 
- Book on graphical models: Koller and Friedman 2009 
- Concise online lecture notes by Stefano Ermon 
- Classic paper: What Energy Functions can be Minimized via Graph Cuts? 

(Kolmogorov and Zabih)

https://ermongroup.github.io/cs228-notes/
https://www.cs.cornell.edu/~rdz/Papers/KZ-PAMI04.pdf


Visual Geometry
• What can we say about the 3D world from pictures? 

- Using one picture, many ambiguities

http://en.wikipedia.org/wiki/Ames_room



Visual Geometry
• What can we say about the 3D world from 2D pictures? 

- Using one picture, many ambiguities

Images from S. Lazebnik



Why the ambiguity?
• Structure and depth are ambiguous from single views.

Optical center

P1
P2

P1’=P2’



What cues help us to perceive 3d shape and depth?



If stereo were critical for depth 
perception, navigation, recognition, 
etc., then this would be a problem

Source J. Hays



Shading

[Figure from Prados & Faugeras 2006]
Source J. Hays



Texture

[From A.M. Loh. The recovery of 3-D structure using visual texture patterns. PhD thesis]
Source J. Hays

http://www.csse.uwa.edu.au/~angie/thesis.pdf


Focus/defocus

[figs from H. Jin and P. Favaro, 2002]

Images from 
same point of 
view, different 
camera 
parameters

3d shape / depth 
estimates



Occlusion

Rene Magritt'e famous 
painting Le Blanc-Seing, 
1965

Source J. Hays



Perspective effects

Image credit: S. Seitz



Motion

Figures from L. Zhang



3D reconstruction

• Typically 3D reconstruction is computed from multiple 
photographs. 

– Humans (usually) can use one view but it’s very difficult. 
– Reconstructing from many views and unknown camera 

locations is still difficult! 
– Many variations: structure-from-motion, multi-view stereo, 

etc.



3D reconstruction from Internet photos

BigSFM, Snavely at al. (2013)



Problems in visual geometry
• Camera calibration: use 3D-2D corrs 
• Structure-from-motion: use 2D-2D corrs 
• (Multi-view) stereo: use motion and images to create 

3D model 
• “Shape from X”:  use Shading, Texture, Focus

scene point

optical center

image plane



Multi-view geometry problems
• Given projections of the same 3D points in two or more 

images, compute the unknown camera parameters and 
3D coordinates of the points

Camera 3
R3,t3 Slide credit: 

Noah Snavely

?

Camera 1
Camera 2R1,t1 R2,t2



What is preserved in images?

• Distances? 
– no! 

• Parallelism 
– no! 

• Angles? 
– no! 

• Collinearity? 
– Yes!



Projective Geometry
Projective geometry is a classical topic in mathematics. 
Like Euclidean geometry but with: 
- Points at infinity: where parallel lines meet. 
- Projective transformations: maps that preserve lines but not 

angles and distances.

Emerged from the study of perspectivity 
in the Renaissaince.

Vanishing points are 
images of points at infinity.

Angles and distances 
are not preserved in 
images.



Projective Geometry
The -dimensional projective space  is defined as 

                             

where  if  with . Equivalence classes of 
vectors are “projective points”.  
Concretely: represent points with homogeneous coordinates!

n ℙn

ℙn = (ℝn+1∖{0})/ ∼ ,

v ∼ w v = λw λ ∈ ℝ∖{0}

- Affine space can be mapped into projective space: . 

- “Points at infinity” are extra points: . 

- No projective notion of parallelism: in a projective plane ( ), lines 
always intersect. 

- Projective transformations (“homographies”) are linear transformations on 
homogeneous coordinates. Bigger group of transformations than affine 
maps!

x ∈ ℝn ↦ [x; 1] ∈ ℙn

[x; 0] ∈ ℙn

n = 2



• From Euclidean to homogeneous coordinates in 2D: 

• From Euclidean to homogeneous coordinates in 3D: 

Euclidean to Homogeneous coordinates



• From homogeneous to Euclidean coordinates in 2D: 

• From homogeneous to Euclidean coordinates in 3D: 

Homogeneous to Euclidean coordinates

Point at infinity in the direction 

Point at infinity in the direction 

(for non-zero vectors)



Homogeneous coordinates
• Two set of coordinates that differ by a multiplicative 

constant denote the same cartesian vector. 

Point in Cartesian is ray in Homogeneous



3D transformations and homogeneous coordinates



Vanishing points and lines
 Parallel lines in the world intersect in the image at a 

“vanishing point”



How can we measure the size of 3D objects from an 
image?

Slide by Steve Seitz
39



Perspective cues
Slide by Steve Seitz

40



Perspective cues
Slide by Steve Seitz

41



Perspective cues
Slide by Steve Seitz

42



Vanishing points and lines

oVanishing Point o
Vanishing Point

Vanishing 
Line



Measuring height

1

2

3

4

5
5.3

2.8
3.3
Camera height

Source J. Hays



Measuring height without a ruler

Source J. Hays



RH

vz

r

b

t

H

b0

t0

vvx vy

vanishing line (horizon)

Source J. Hays



Examples

A. Criminisi, I. Reid, and A. Zisserman, Single View Metrology, IJCV 2000 
 Figure from UPenn CIS580 slides

Source S. Lazebnik

http://dhoiem.cs.illinois.edu/courses/vision_spring10/sources/criminisi00.pdf
http://cis.upenn.edu/~cis580/Spring2015/Lectures/cis580-04-singleview.pdf


Another example
• Are the heights of the two groups of people 

consistent with one another? 
• Measure heights using Christ as reference

Piero della Francesca, Flagellation, ca. 1455

A. Criminisi, M. Kemp, and A. Zisserman,Bringing Pictorial Space to Life: computer techniques for the analysis of 
paintings,  

Proc. Computers and the History of Art, 2002
Source S. Lazebnik

http://research.microsoft.com/apps/pubs/default.aspx?id=67260
http://research.microsoft.com/apps/pubs/default.aspx?id=67260
http://research.microsoft.com/apps/pubs/default.aspx?id=67260
http://research.microsoft.com/apps/pubs/default.aspx?id=67260


 Which is higher – the camera or the man in the 
parachute?

Source J. Hays



Measurements on planes

1 2 3 4

1

2

3

4

Approach:  unwarp then measure
What kind of warp is this?

Source S. Lazebnik



Image rectification

To unwarp (rectify) an image 
• solve for homography H given p and p′ 
– how many points are necessary to solve for H?

p
p′

Source S. Lazebnik



Image rectification: example

Piero della Francesca, Flagellation, ca. 1455

Source S. Lazebnik



Application: 3D modeling from a single image

A. Criminisi, M. Kemp, and A. Zisserman,Bringing Pictorial Space to Life: computer techniques for the analysis of 
paintings,  

Proc. Computers and the History of Art, 2002
Source S. Lazebnik

http://research.microsoft.com/apps/pubs/default.aspx?id=67260
http://research.microsoft.com/apps/pubs/default.aspx?id=67260
http://research.microsoft.com/apps/pubs/default.aspx?id=67260
http://research.microsoft.com/apps/pubs/default.aspx?id=67260


Application: 3D modeling from a single image

J. Vermeer, Music Lesson, 1662

A. Criminisi, M. Kemp, and A. Zisserman,Bringing Pictorial Space to Life: computer techniques for the analysis of 
paintings,  

Proc. Computers and the History of Art, 2002
Source S. Lazebnik

http://research.microsoft.com/apps/pubs/default.aspx?id=67260
http://research.microsoft.com/apps/pubs/default.aspx?id=67260
http://research.microsoft.com/apps/pubs/default.aspx?id=67260
http://research.microsoft.com/apps/pubs/default.aspx?id=67260


Pinhole cameras again
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Pinhole cameras again

Camera 
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(0, 0, 0)
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Pinhole cameras again

U = f
X
Z

+ px

V = f
Y
Z

+ py
[

U
V
1 ] =

f 0 px 0
0 f py 0
0 0 1 0
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=
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Y
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Pinhole cameras again

[
U
V
1 ] = K [Id |0]

Xcam

Ycam

Zcam

1

= K[R | t]

X
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world frame



Pinhole camera model

• 11 total parameters: 5 intrinsic + 6 extrinsic 
•  is a 3x4 matrix 
• Fact:  is a valid camera iff left 3x3 block is 

invertible. 
• Projective camera model: 3x4 matrix of full rank.

M = K[R | t]
M ∈ ℝ3×4

[
u
v
1] ∼

α s u0

0 β v0

0 0 1

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz

x
y
z
1

K [R | t]



Geometry of pinhole cameras

• The viewing lines associated 
with a pinhole camera all 
pass through the pinhole. 

• The retinal plane (and image 
coordinates) are less 
important than the pinhole. 

• The recorded lines form a 
two-dimensional family.



Exotic cameras
• A camera is a machine that records light and creates 

2D picture of a 3D world. 
• It “samples” a two-dimensional set of lines.

“Two-slit camera”



Thinking in projective space
• It is often convenient to “forget” that the world is 

Euclidean (simplifies calculations and removes 
assumptions). 

• Projective reconstruction yields parameters of  
and 3D reconstruction up to projective transformations. 

• To “upgrade” a transformation, we need the camera’s 
internal parameters (  matrix).

M ∈ ℝ3×4

K

Hartley Zisserman 04



Calibration from vanishing points
• Consider a scene with three orthogonal vanishing 

directions: 

• Note: v1, v2 are finite vanishing points and v3 is an 
infinite vanishing point

v2v1.

v3

.



Calibration from vanishing points
• Consider a scene with three orthogonal vanishing 

directions: 

• We can align the world coordinate system with these 
directions

v2v1.

v3

.



Calibration from vanishing points
• Let us align the world coordinate system with three 

orthogonal vanishing directions in the scene: 

• Each pair of vanishing points gives us a constraint on 
the focal length and principal point.
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Single-view geometry summary

• Projective geometry is a natural language for vision 
(angles and distances not preserved in images). 

• Vanishing points are projections of points at infinity. 

• Pinhole camera model is simpler in projective setting. 

• Orthogonal vanishing points can be used to recover 
calibration matrix.



Image Stitching
• Combine two or more overlapping images to 

make one larger image

Add example

Slide credit: Vaibhav Vaish

http://robots.stanford.edu/cs223b07/notes/CS223B-L11-Panoramas.ppt


Illustration

Camera Center
Following slides from D. Hoiem



Problem set-up
• x = K [R t] X 
• x' = K' [R' t'] X 
• t=t'=0 
  

• x'=Hx    where    H = K' R' R-1 K-1 
• Typically only R and f will change (4 

parameters), but, in general, H has 8 parameters

f f'

.

x

x'

X



Image Stitching Algorithm Overview

1. Detect keypoints (e.g., SIFT) 
2. Match keypoints (e.g., 1st/2nd NN < thresh) 
3. Estimate homography with four matched keypoints 

(using RANSAC) 
4. Combine images



Computing homography
 Assume we have four matched points: How do we 

compute the homography H? 

Direct Linear Transformation (DLT)
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Computing homography
Direct Linear Transform 

• Apply SVD: UDVT = A 
• h = Vsmallest (column of V corr. to smallest singular value)



Computing homography
• Assume we have four matched points: How do 

we compute homography H? 

Normalized DLT 
1. Normalize coordinates for each image 

a) Translate for zero mean 
b) Scale so that average distance to origin is ~sqrt(2) 

– This makes problem better behaved numerically (see 
HZ p. 107-108) 

2. Compute     using DLT in normalized 
coordinates 

3. Unnormalize: 

Txx =~ xTx ʹʹ=ʹ~

THTH ~1−ʹ=
ii Hxx =ʹ

H~



Computing homography
• Assume we have matched points with outliers: How 

do we compute homography H? 

Automatic Homography Estimation with RANSAC 
1. Choose number of samples N 
2. Choose 4 random potential matches 
3. Compute H using normalized DLT 
4. Project points from x to x’ for each potentially 

matching pair: 
5. Count points with projected distance  <  t 

– E.g., t = 3 pixels 
6. Repeat steps 2-5 N times 

– Choose H with most inliers

HZ Tutorial ‘99

ii Hxx =ʹ

http://users.cecs.anu.edu.au/~hartley/Papers/CVPR99-tutorial/tut_4up.pdf


Automatic Image Stitching

1. Compute interest points on each image 

2. Find candidate matches 

3. Estimate homography H using matched points 
and RANSAC with normalized DLT 

4. Project each image onto the same surface and 
blend



RANSAC for Homography

Initial Matched Points



RANSAC for Homography

Final Matched Points



RANSAC for Homography



Choosing a Projection Surface
 Many to choose: planar, cylindrical, spherical, etc.



Planar Mapping

f f

x

x

1) For red image: pixels are already on the planar surface 
2) For green image: map to first image plane



Planar Projection

Planar

Photos by Russ Hewett



Planar Projection

Planar



Cylindrical Mapping

f
f

x
x

1) For red image: compute h, theta on cylindrical surface from (u, v) 
2) For green image: map to first image plane, than map to cylindrical surface



Cylindrical Projection

Cylindrical



Cylindrical Projection

Cylindrical



Planar

Cylindrical



Recognizing Panoramas

Brown and Lowe 2003, 2007Some of following material from Brown and Lowe 2003 talk



Recognizing Panoramas
Input: N images 
1. Extract SIFT points, descriptors from all images 
2. Find K-nearest neighbors for each point (K=4) 
3. For each image 

a) Select m candidate matching images by 
counting matched keypoints (m=6) 

b) Solve homography Hij for each matched image



Recognizing Panoramas
Input: N images 
1. Extract SIFT points, descriptors from all images 
2. Find K-nearest neighbors for each point (K=4) 
3. For each image 

a) Select m candidate matching images by 
counting matched keypoints (m=6) 

b) Solve homography Hij for each matched image 
c) Decide if match is valid (ni  >  8  +   0.3  nf )

# inliers
# keypoints in 
overlapping area



Recognizing Panoramas (cont.)
(now we have matched pairs of images) 
4. Find connected components



Finding the panoramas



Finding the panoramas



Recognizing Panoramas (cont.)
(now we have matched pairs of images) 
4. Find connected components 
5. For each connected component 

a) Perform bundle adjustment to solve for rotation 
(θ1, θ2, θ3) and focal length f  of all cameras 

b) Project to a surface (plane, cylinder, or sphere) 
c) Render with multiband blending



Bundle adjustment for stitching

• Non-linear minimization of re-projection error 

•    where    H = K’ R’ R-1 K-1 

• Solve non-linear least squares (Levenberg-Marquardt 
algorithm) 
–  See paper for details
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Bundle Adjustment
• New images initialised with rotation, focal length of 

best matching image



Bundle Adjustment
• New images initialised with rotation, focal length of 

best matching image



Straightening
• Rectify images so that “up” is vertical



Details to make it look good

• Choosing seams 
• Blending



Choosing seams

Image 1

Image 2

x x

im1 im2

• Easy method 
– Assign each pixel to image with nearest center



Choosing seams
• Easy method 

– Assign each pixel to image with nearest center 
– Create a mask:  

• mask(y, x) = 1 iff pixel should come from im1 

– Smooth boundaries (called “feathering”):  
• mask_sm = imfilter(mask, gausfil)  

– Composite 
• imblend = im1_c.*mask + im2_c.*(1-mask) 

Image 1

Image 2

x x

im1 im2



Gain compensation
• Simple gain adjustment 

– Compute average RGB intensity of each image in 
overlapping region 

– Normalize intensities by ratio of averages



Multi-band Blending
• Burt & Adelson 1983 

– Blend frequency bands over range ∝ λ



Multiband blending

1. Compute Laplacian pyramid of 
images and mask 

2. Create blended image at each 
level of pyramid 

3. Reconstruct complete image

Laplacian pyramids

At low frequencies, blend slowly 
At high frequencies, blend quickly 



Blending comparison (IJCV 2007)



Blending Comparison



Further reading
• DLT algorithm: HZ p. 91 (alg 4.2), p. 585 
• Normalization: HZ p. 107-109 (alg 4.2) 
• RANSAC: HZ Sec 4.7, p. 123, alg 4.6 

• Rick Szeliski’s alignment/stitching tutorial 
• Recognising Panoramas: Brown and Lowe, IJCV 2007 

(also bundle adjustment)

http://www.caam.rice.edu/~zhang/caam699/p-files/Im-Align2005.pdf
http://www.caam.rice.edu/~zhang/caam699/p-files/Im-Align2005.pdf
http://cvlab.epfl.ch/~brown/papers/ijcv2007.pdf
http://cvlab.epfl.ch/~brown/papers/ijcv2007.pdf


Stitching summary
• Homography relates rotating cameras 

• Recover homography using RANSAC and normalized 
DLT 

• Bundle adjustment (global optimization) minimizes 
reprojection error for set of related images 

• Details to make it look nice (blending).



Next class

• Stereo and epipolar geometry


