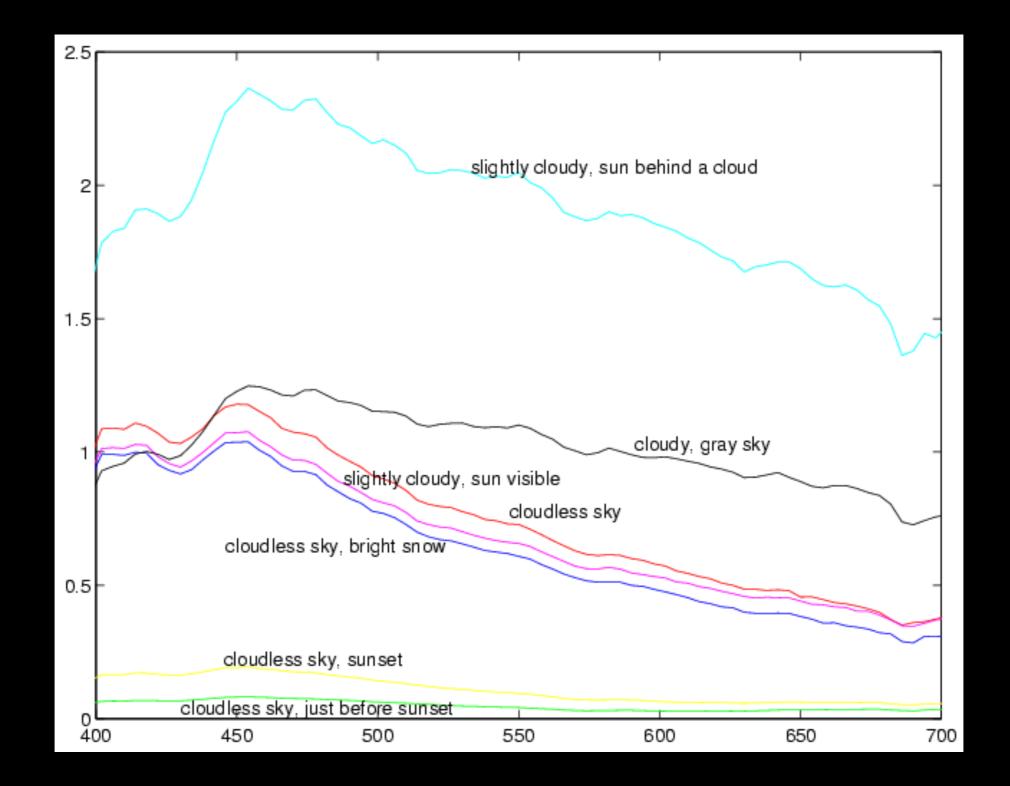
Introduction to Computer Vision

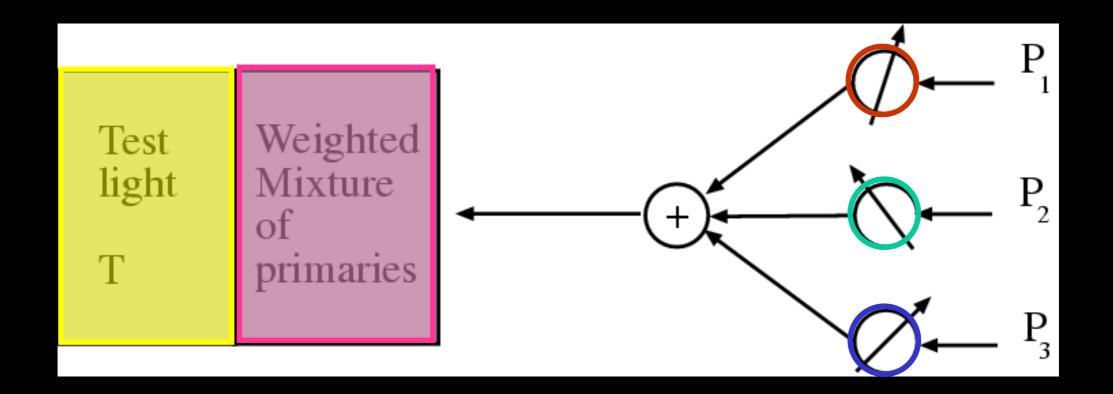
Instructors: Jean Ponce and Matthew Trager jean.ponce@inria.fr, matthew.trager@cims.nyu.edu

TAs: Jiachen (Jason) Zhu and Sahar Siddiqui jiachen.zhu@nyu.edu, ss12414@nyu.edu

Spectral energy density



Color Matching Experiments



Adjust the knobs on the primaries until the split field looks uniform.

 $T = w_1 P_1 + w_2 P_2 + \dots + w_k P_k$ $T + w_1 P_1 + \dots + w_n P_n = w_{n+1} P_{n+1} + \dots + w_k P_k$ Notation only! Subtractive matching

Linearity of Colour Matching (Grassman's Laws)

$$T_{a} = w_{a1}P_{1} + w_{a2}P_{2} + w_{a3}P_{3} \text{ and } T_{b} = w_{b1}P_{1} + w_{b2}P_{2} + w_{b3}P_{3}$$

$$\lambda T_{a} + \mu T_{b} = (\lambda w_{a1} + \mu w_{b1})P_{1} + (\lambda w_{a2} + \mu w_{b2})P_{2} + (\lambda w_{a3} + \mu w_{b3})P_{3}$$

$$T_{a} = w_{1}P_{1} + w_{2}P_{2} + w_{3}P_{3}$$

and
$$T_{b} = w_{1}P_{1} + w_{2}P_{2} + w_{3}P_{3}$$
$$T_{b} = w_{1}P_{1} + w_{2}P_{2} + w_{3}P_{3}$$

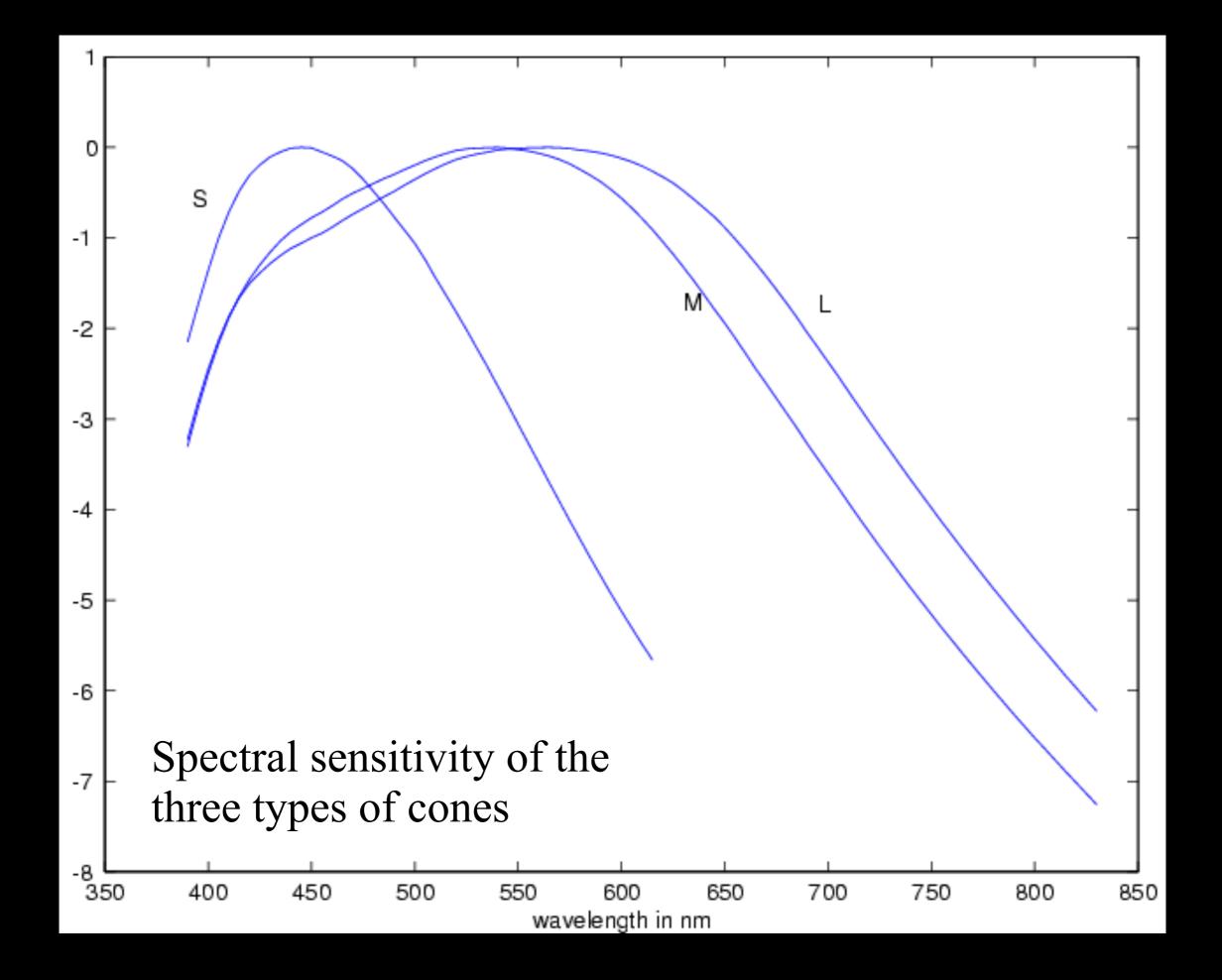
Note: this does not mean that T_a and T_b have the same spectrum.

Principle of Univariance

- There are (usually) three types of photoreceptors in the human eye. They do not directly measure spectral radiance.
- The response of these receptors is 1D (strong or weak). No information on wavelength.
- Because of linearity, the response of each

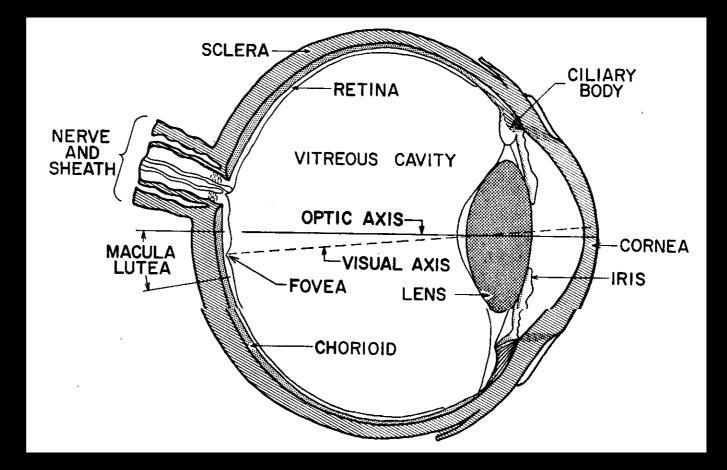
photoreceptor can be modeled as $p_k = \int \sigma_k(\lambda) E(\lambda) d\lambda$

• The sensitivity σ_k can be measured experimentally.



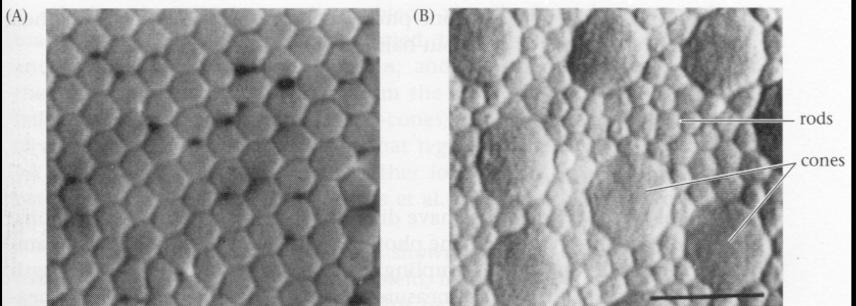
The human

eye..



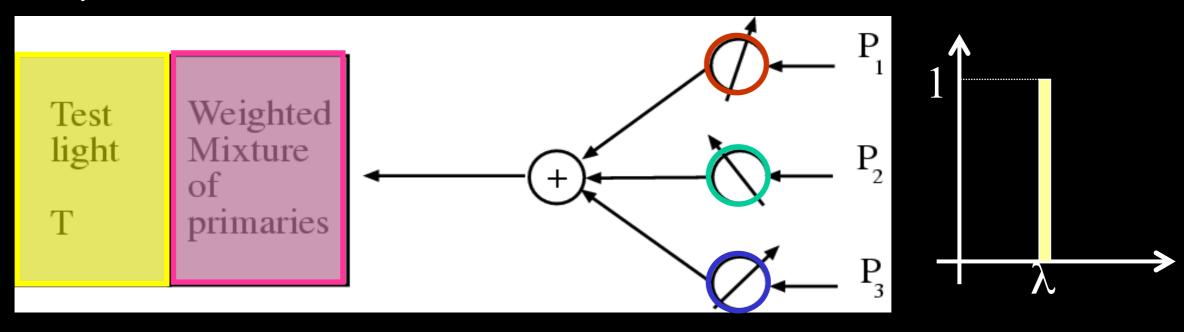
Cones in the fovea

Rods and cones in the periphery



Color Matching Functions

- Problem: given a set of primaries, what are the weights matching a given spectral radiance?
- Experiments:



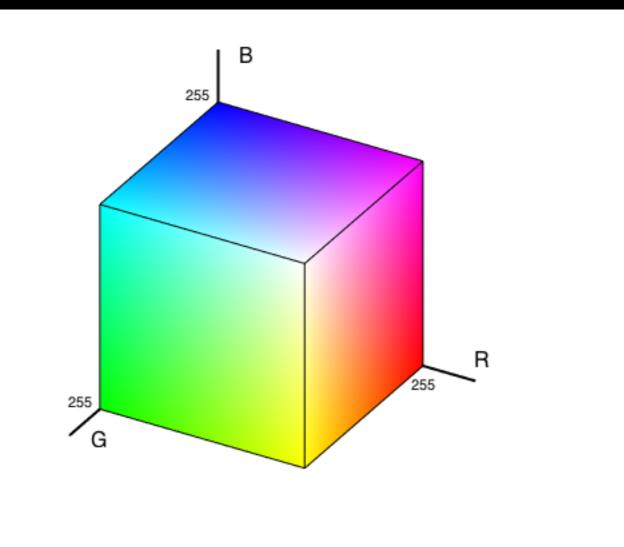
 $L(\lambda) = f_1(\lambda) P_1 + f_2(\lambda) P_2 + f_3(\lambda) P_3$ Color matching functions

To match T use linearity:

 $\left\{\int_{\Lambda} f_1(\lambda)T(\lambda)d\lambda\right\}P_1 + \left\{\int_{\Lambda} f_2(\lambda)T(\lambda)d\lambda\right\}P_2 + \left\{\int_{\Lambda} f_3(\lambda)T(\lambda)d\lambda\right\}P_3$

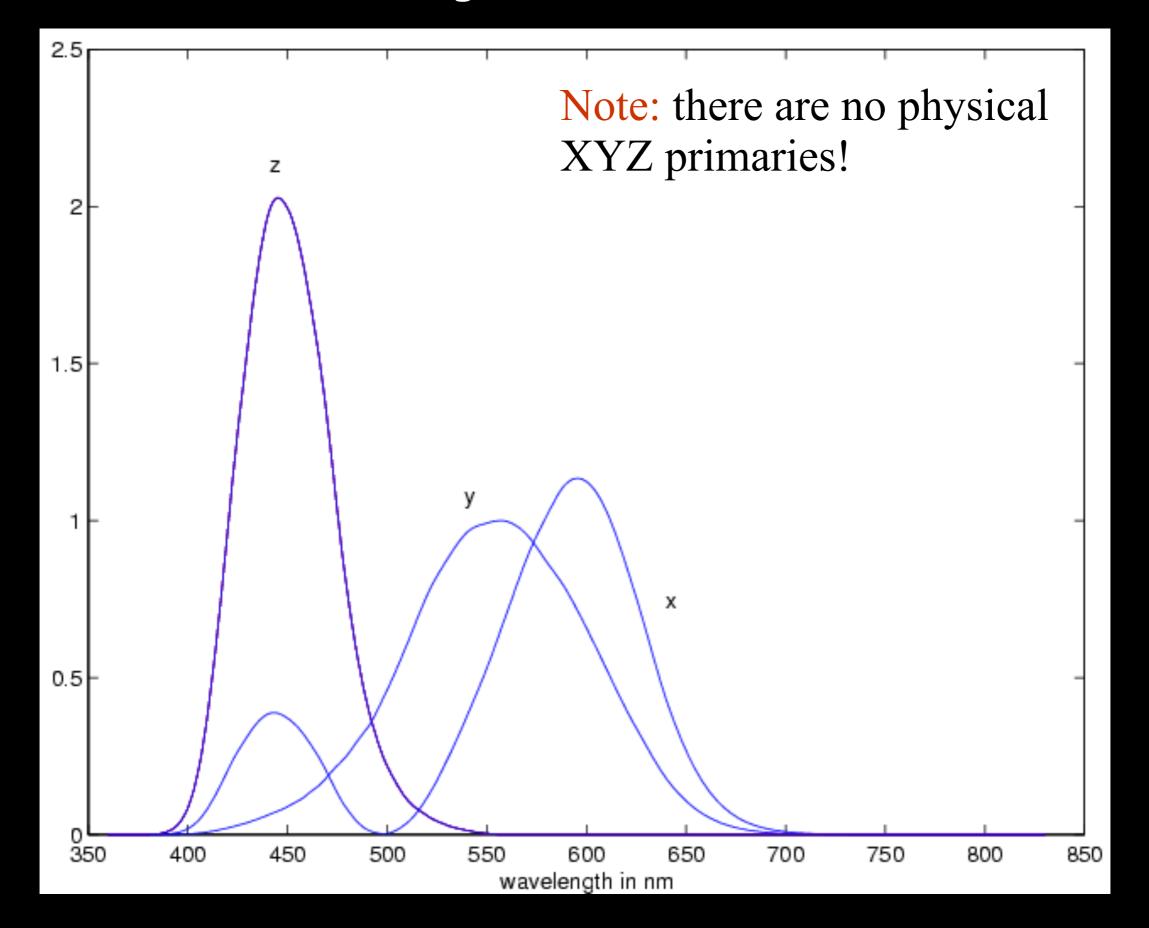
RGB Color Matching Functions



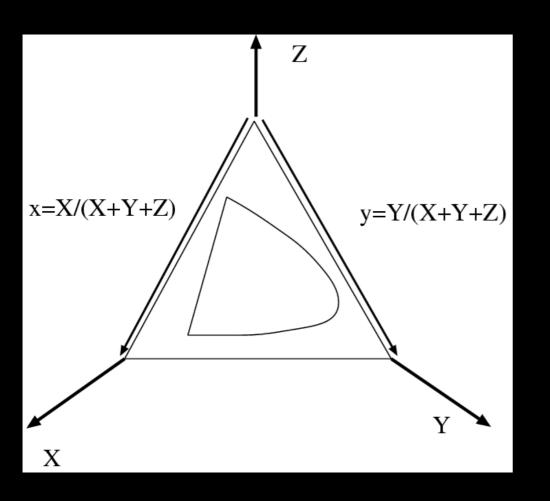


The RGB color cube

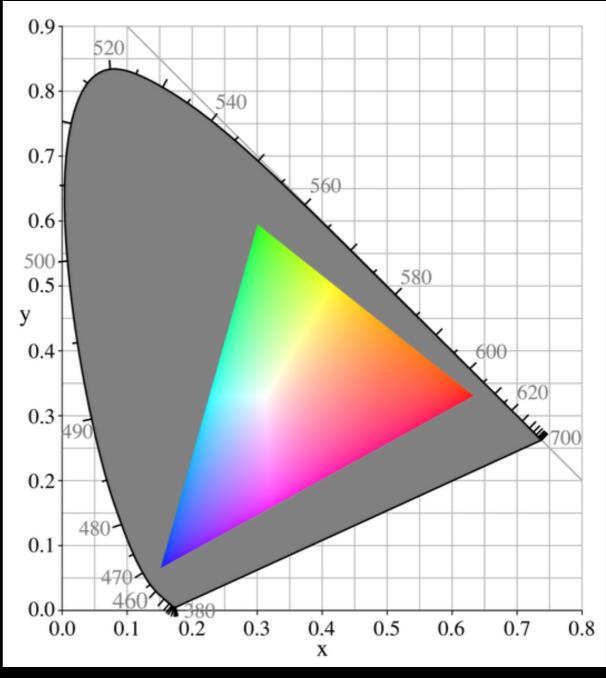
CIE XYZ Color Matching Functions



All visible XYZ colors Z X+Y+Z=1 X



Boundary: Single wavelength colors



CIE XYZ and xy spaces

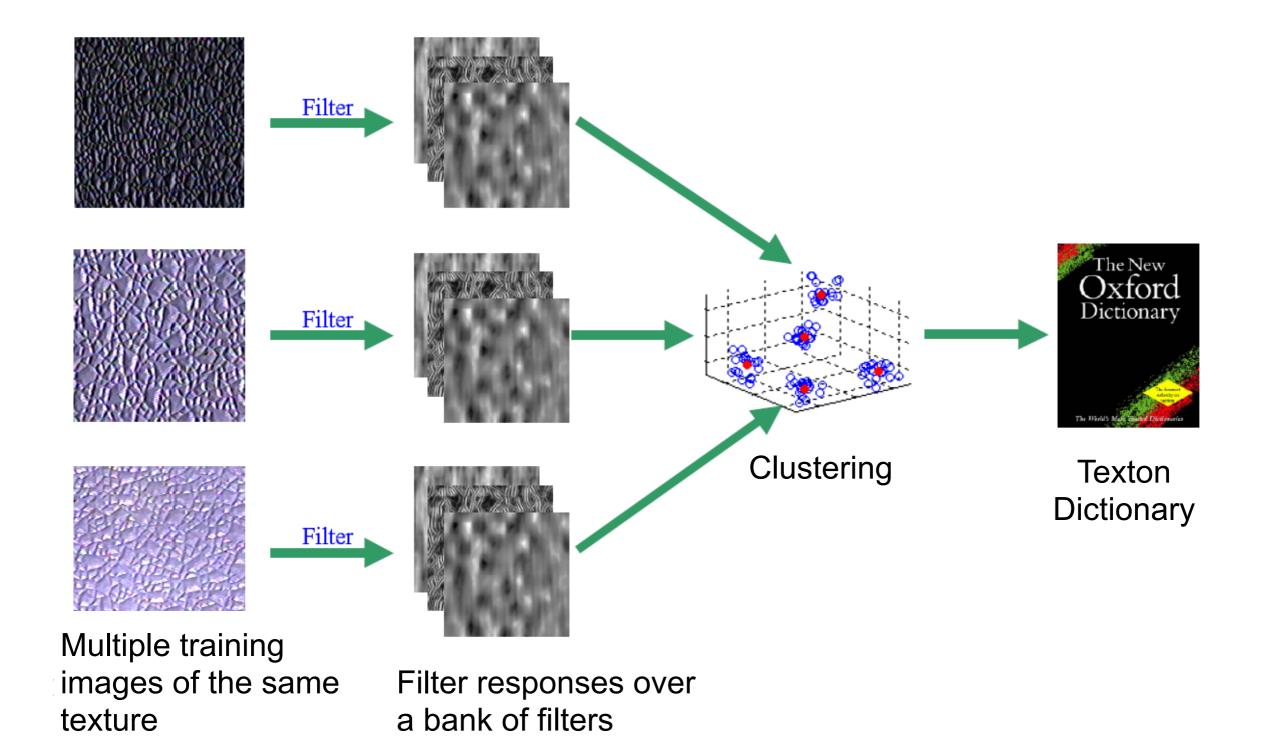
Outline

- Texture
 - Textons
 - Bags of words
- Segmentation
 - K means and EM algorithm
 - Mean-shift algorithm
 - Graph cuts

Texture Classification

- Profound observation: Grass and sea pictures don't look the same!
- Basic idea: Model the distribution of "texture" over the image (or over a region) and classify in different classes based on the texture models learned from training examples.

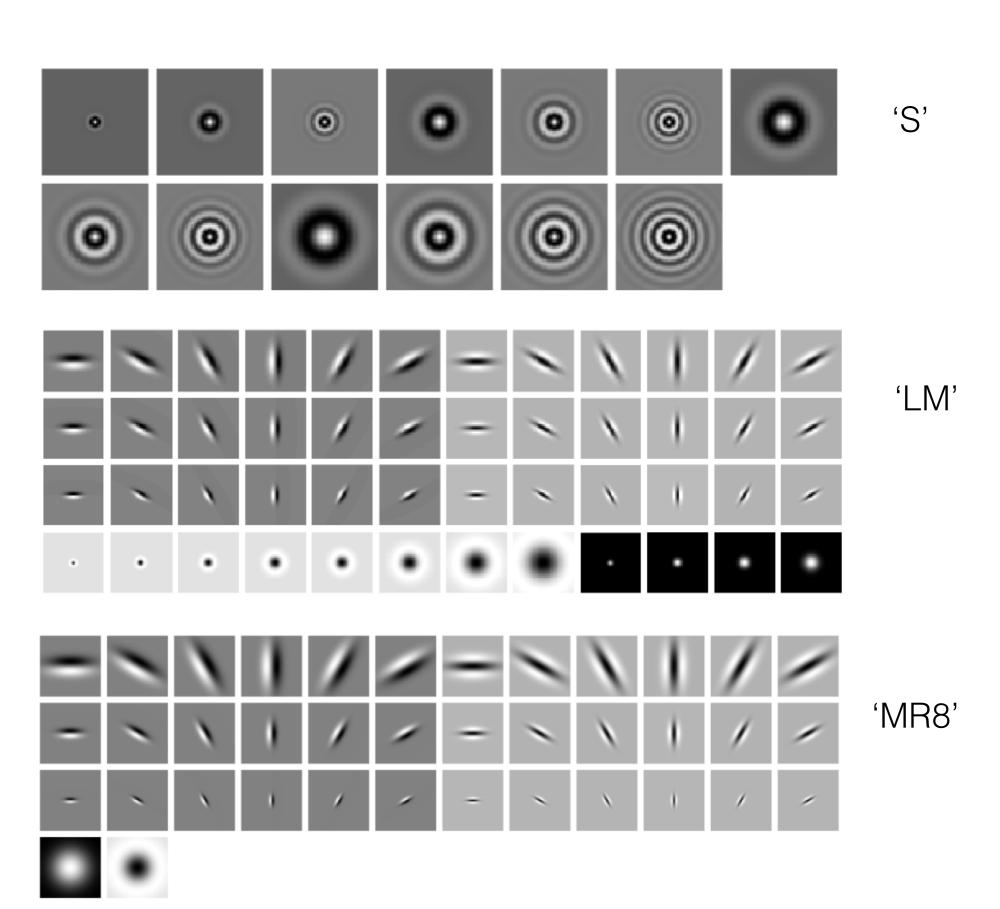
The concept of "texton"



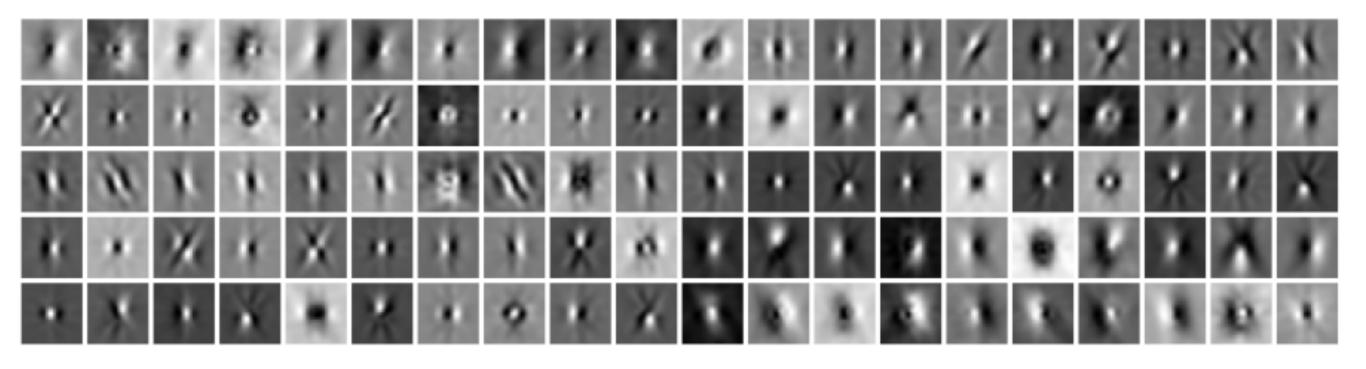
Example of filter banks

Isotropic

Gaussian derivatives at different scales and orientations

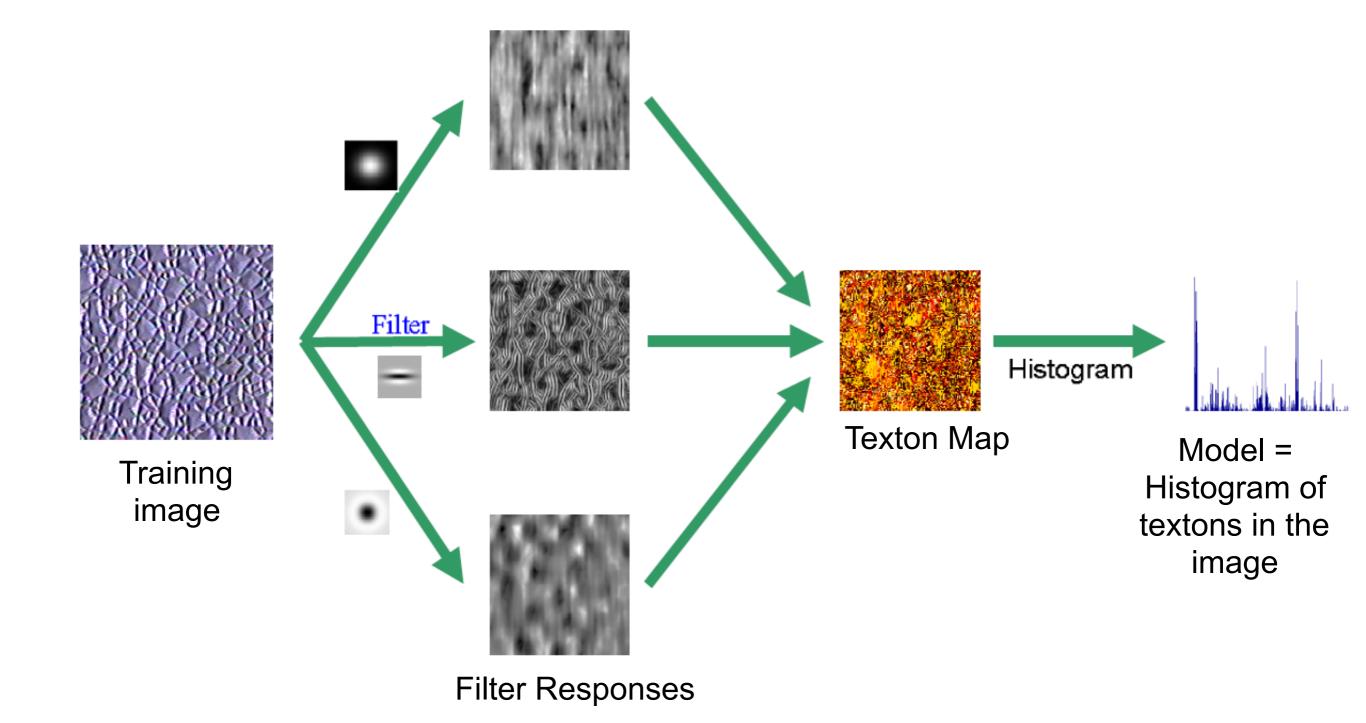


Example of textons (LM)

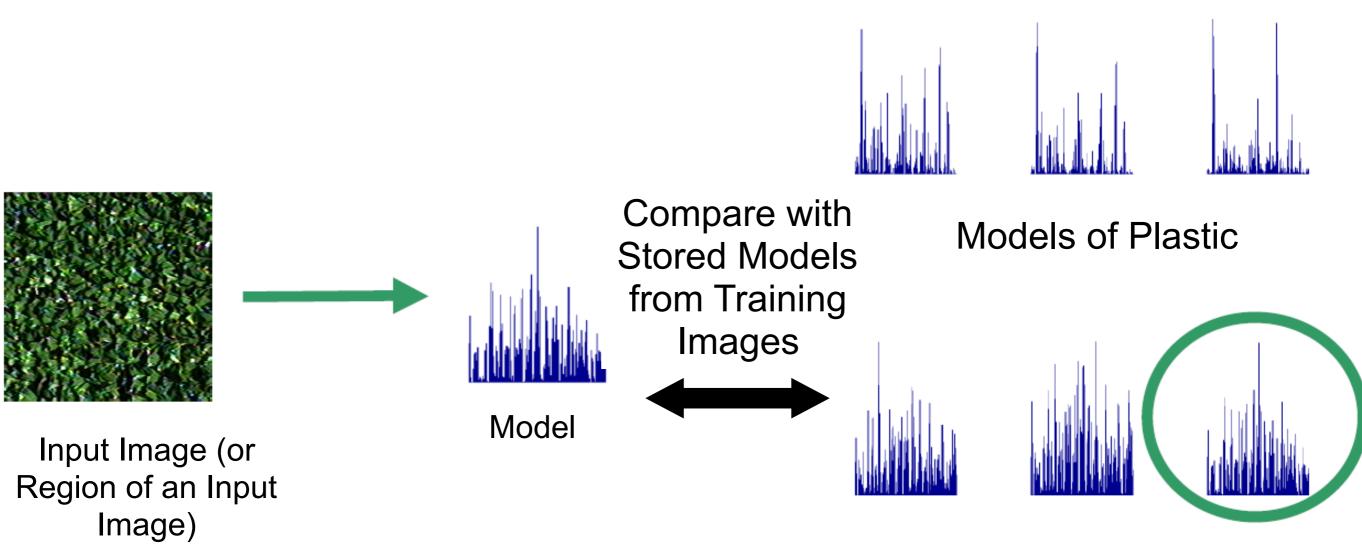


(Linear combinations of filters corresponding to cluster centers)

Modeling texton distributions



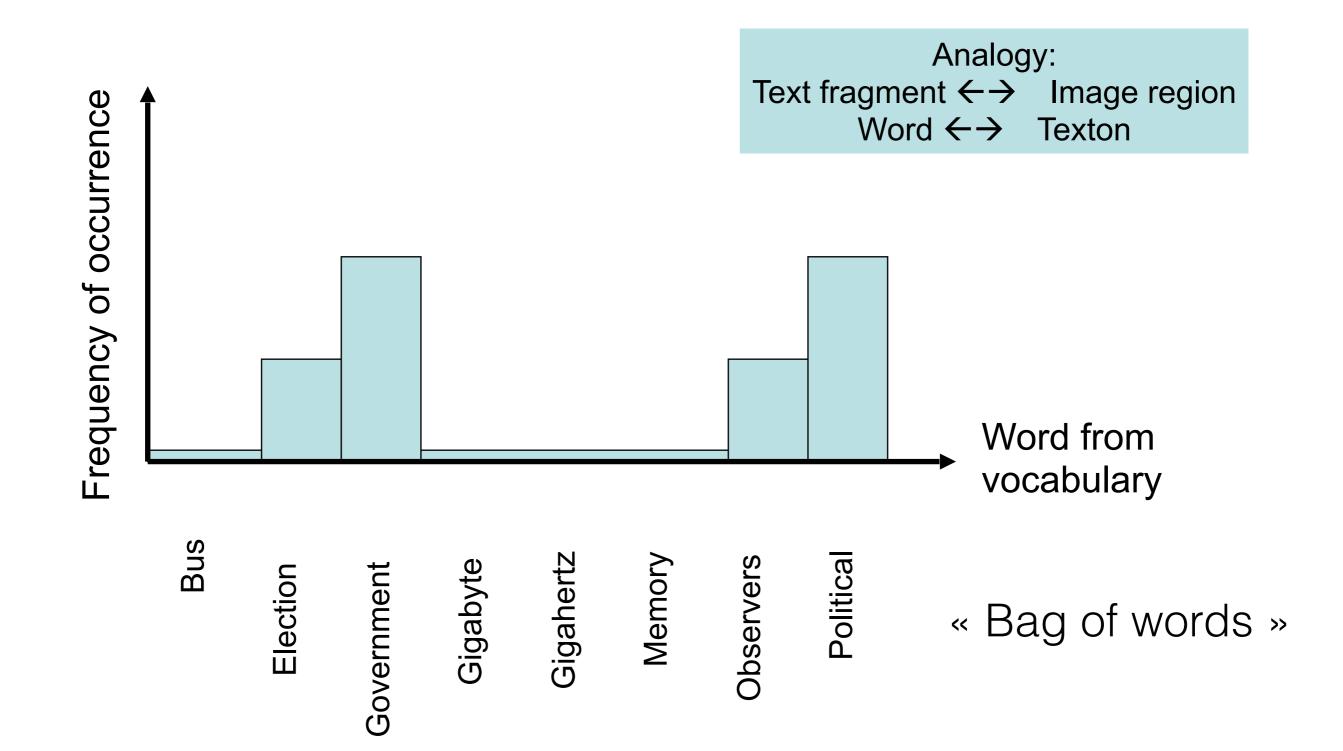
Classification



Models of Grass

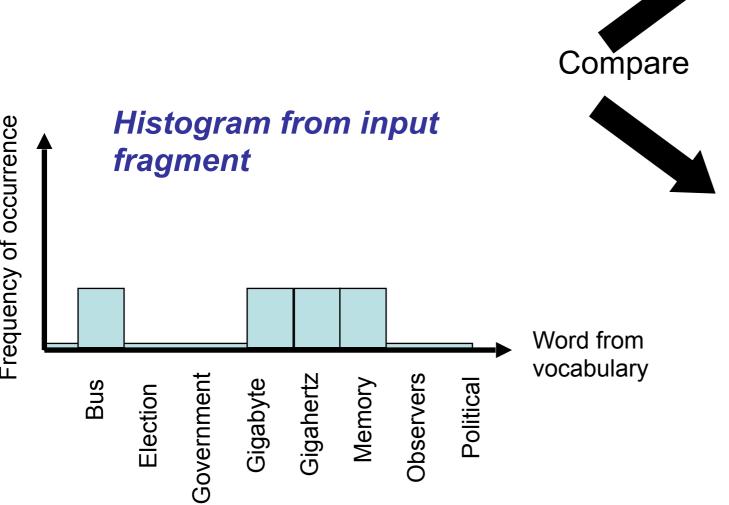
Analogy with Text Analysis

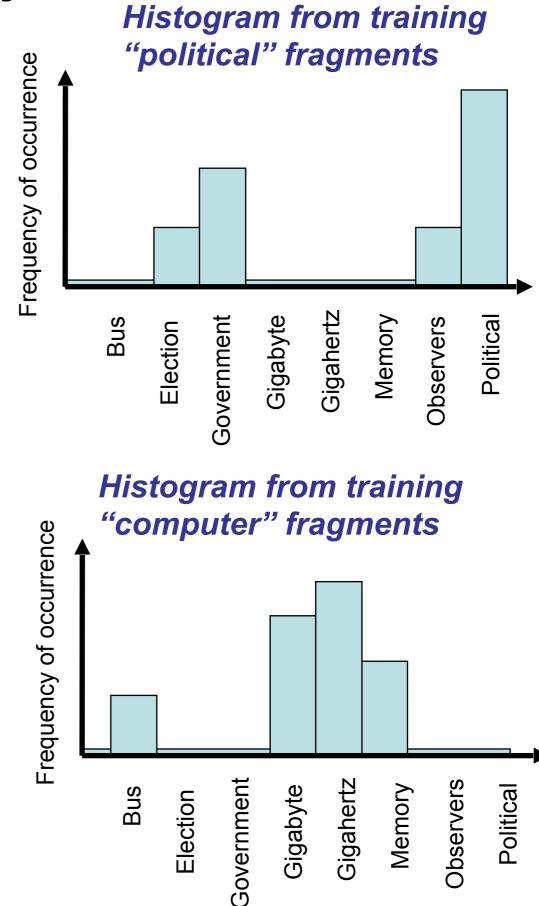
Political observers say that the government of Zorgia does not control the political situation. The government will not hold elections ...



Analogy with Text Analysis

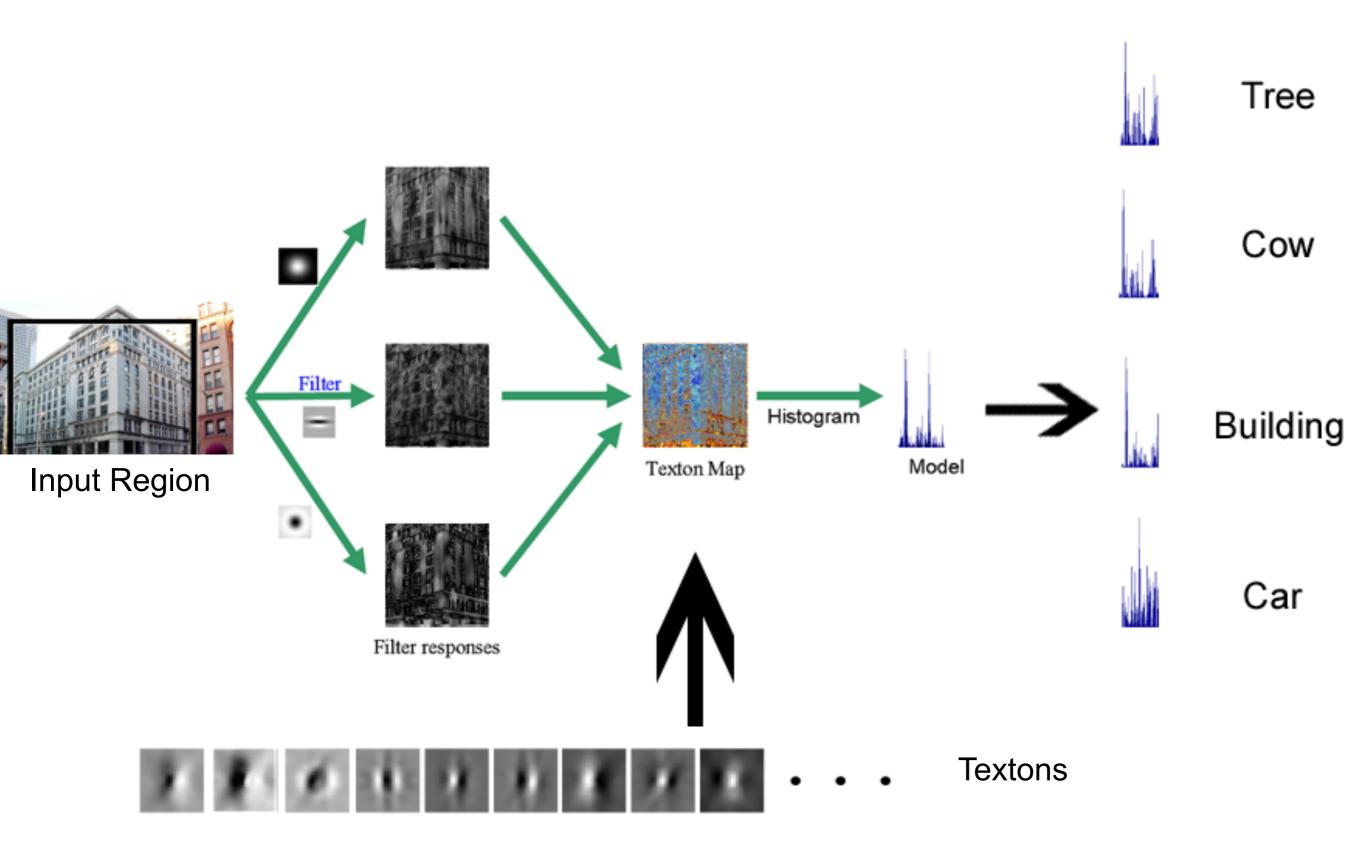
The ZH-20 unit is a 200Gigahertz processor with 2Gigabyte memory. Its strength is its bus and highspeed memory.....





Frequency of occurrence

Example Classification

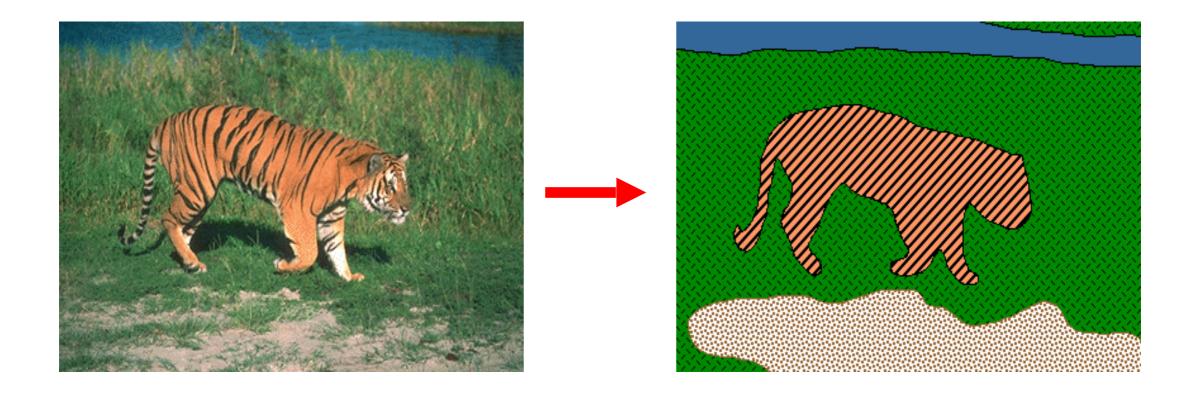


Examples

Summary

- Sources:
 - J. Winn, A. Criminisi and T. Minka. Object Categorization by Learned Universal Visual Dictionary. Proc. IEEE Intern. Conf. Comp. Vision. 2005. (Also Csurka et al., 2004)
 - M. Varma and A. Zisserman. A statistical approach to texture classification from single images. IJCV, 62(1–2):61–81, April 2005. (Also Lazebnik et al., 2003)
- Questions:
 - How many textons/words?
 - What filters?
 - How to construct clusters?
 - How to compare histogram distributions?
 - How to exploit the spatial distribution of textons (these examples completely ignore the relative positions of textons in the image)?
- Will be revisited for object recognition

Segmentation and clustering



Segmentation challenges

Kittens are distinguishable by color (sort of), but not texture.

Wheels are part of the car, but not similar in color or texture.

Chameleon is distinguishable by texture, but not color.

How do we recognize that the head and body/sweater are the same "person"?

Segmentation challenges

http://optical-illusions.wikia.com/wiki/Emergence

Segmentation issues

- "Bottom-up" or "top-down" process?
- Supervised or unsupervised?
- What is the application?

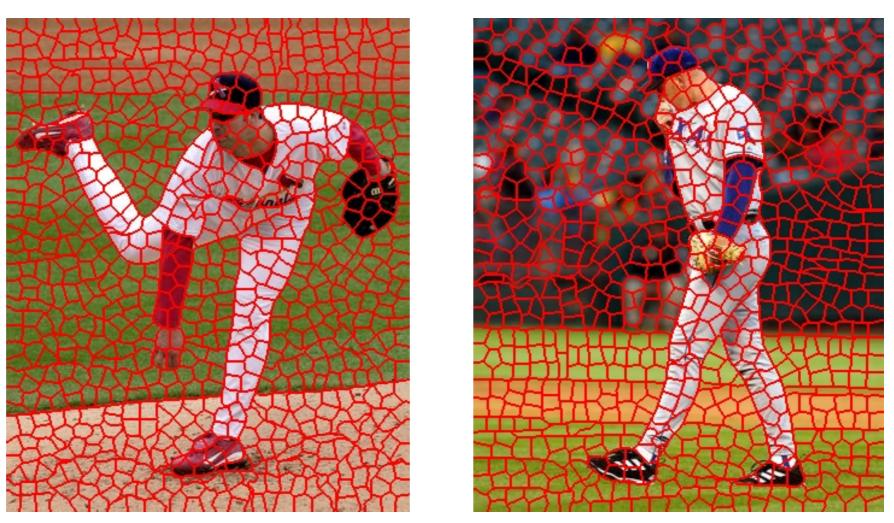
Outline

- Segmentation as clustering
 - K-means
 - EM algorithm
 - Mean shift
- Segmentation as graph cutting
 - Normalized cuts
 - CRF energy functions, graph cut optimization

The goals of segmentation

- Group together similar-looking pixels for efficiency of further processing
 - "Bottom-up" process
 - Unsupervised

"superpixels"

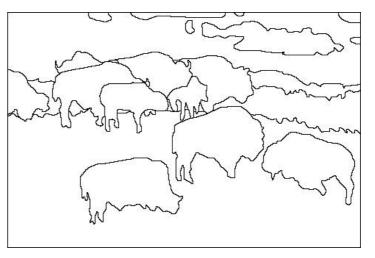


X. Ren and J. Malik. <u>Learning a classification model for segmentation</u>. ICCV 2003.

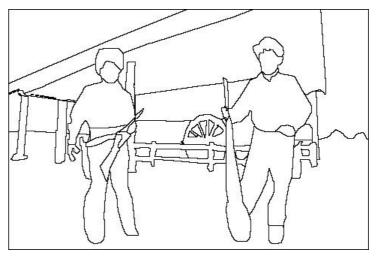
The goals of segmentation

- Separate image into coherent "objects"
 - This is an ill-defined task!

image



human segmentation



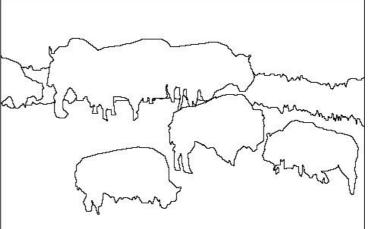
Berkeley segmentation database:

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

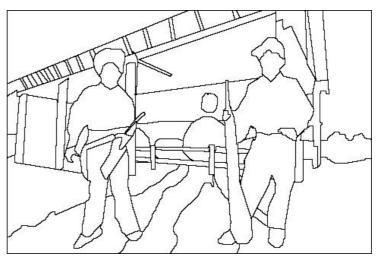
The goals of segmentation

- Separate image into coherent "objects"
 - This is an ill-defined task!

image



human segmentation



Berkeley segmentation database:

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

More About Background Removal in Office 2010

Office Team 30 Nov 2009 5:37 AM 🥯 22

Hi, I'm Tucker Hatfield, a PM on the Office Graphics team, and a while back I posted an introduction to Background Removal (The Magic of Background Removal). In this post I'll build on what I showed you last time by giving an example of how to make more detailed background removal and how to do some interesting things with the results.

As I showed before, in many cases you'll find you can effectively remove a background with nothing more than a very little adjustment of the marquee, but other times it takes a little work. Here's a good example of a photo that takes a bit more attention.

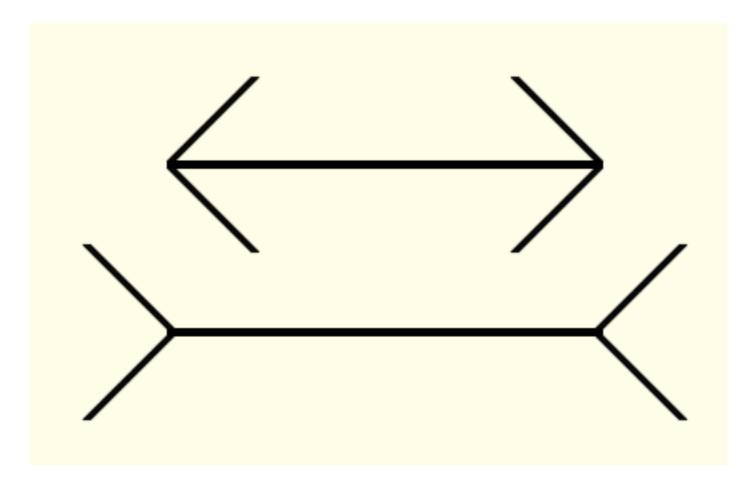
Interactive segmentation

If we just clicked Remove Background and accepted the default marquee for this picture, you'd get the result below. You can see that even with the default marquee it did a pretty good job of guessing what the subject was, but there are a few problems.

Inspiration from psychology

• The Gestalt school: Grouping is key to visual perception (German: Gestalt - "essence or shape of an entity's complete form")

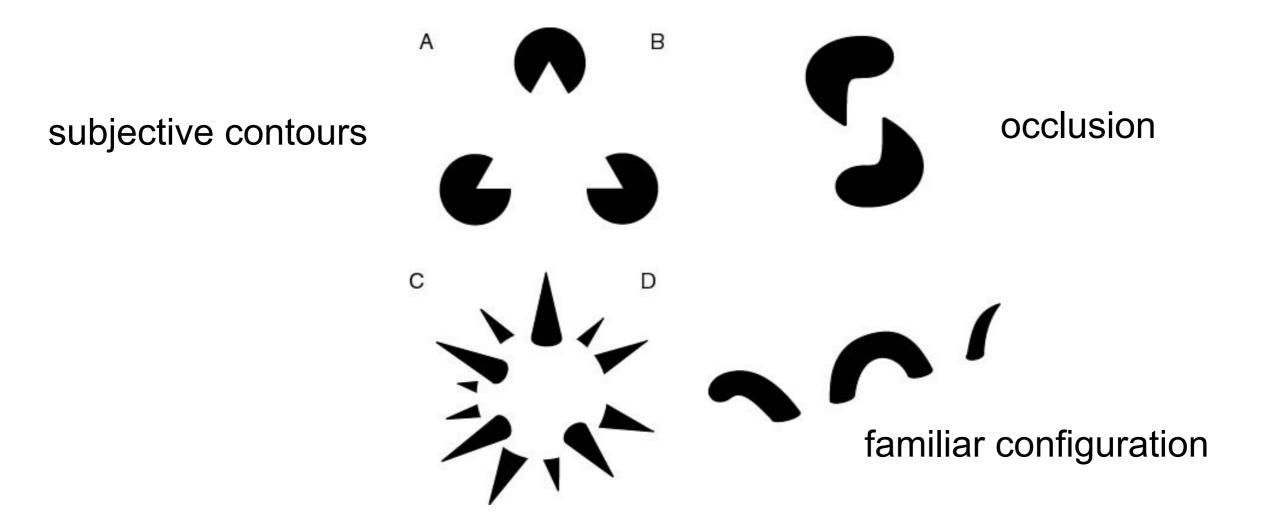
The Muller-Lyer illusion



http://en.wikipedia.org/wiki/Gestalt_psychology

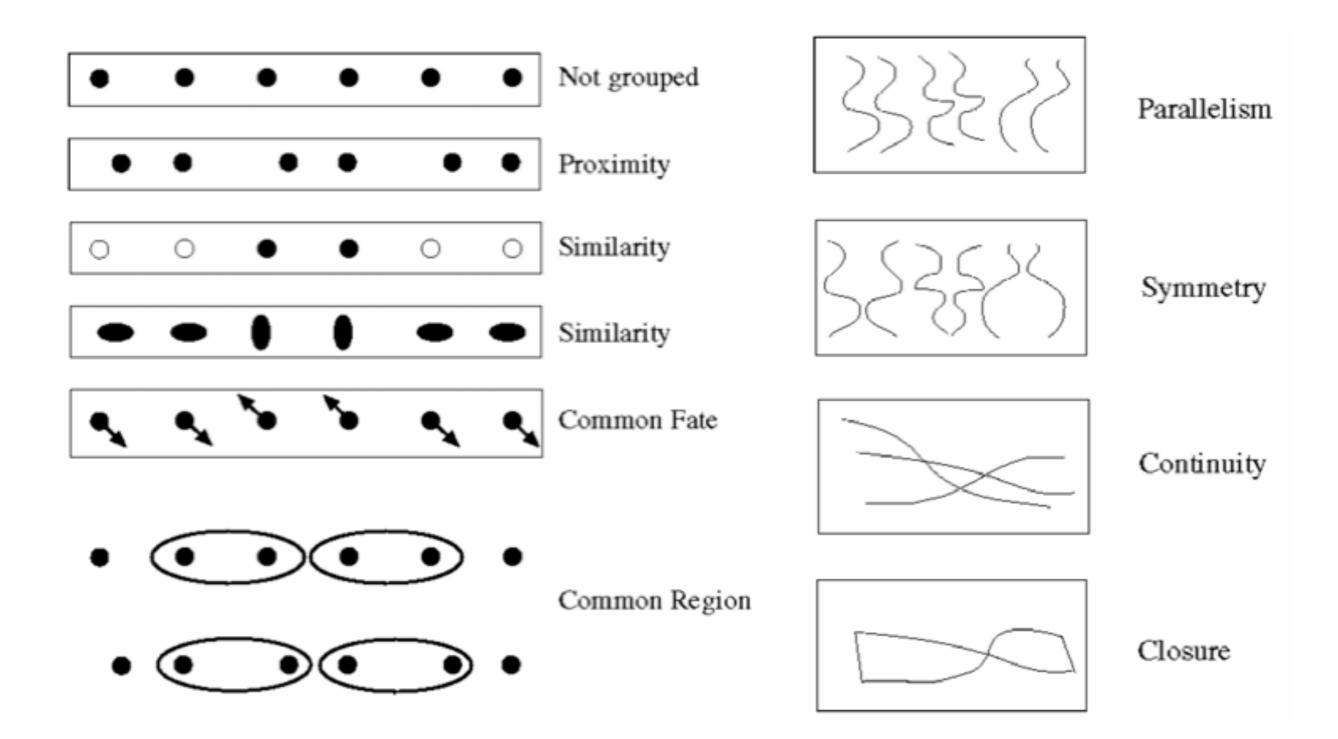
The Gestalt school

- Elements in a collection can have properties that result from relationships
 - "The whole is greater than the sum of its parts"

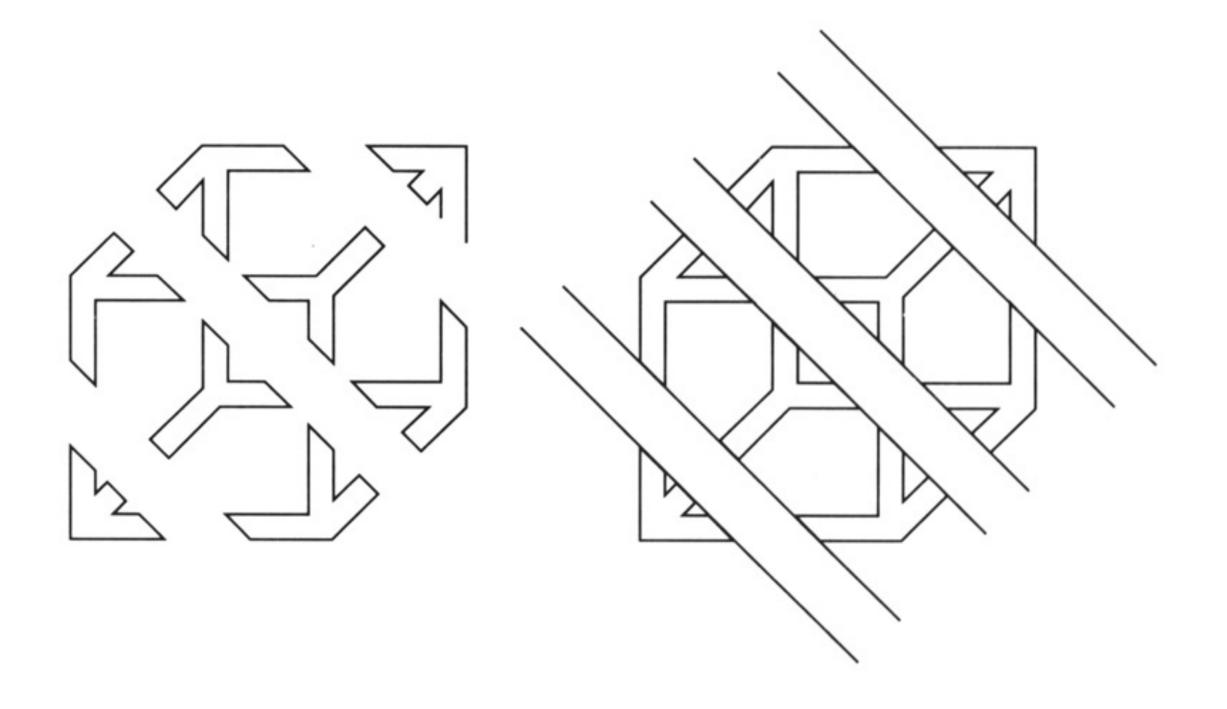


http://en.wikipedia.org/wiki/Gestalt_psychology

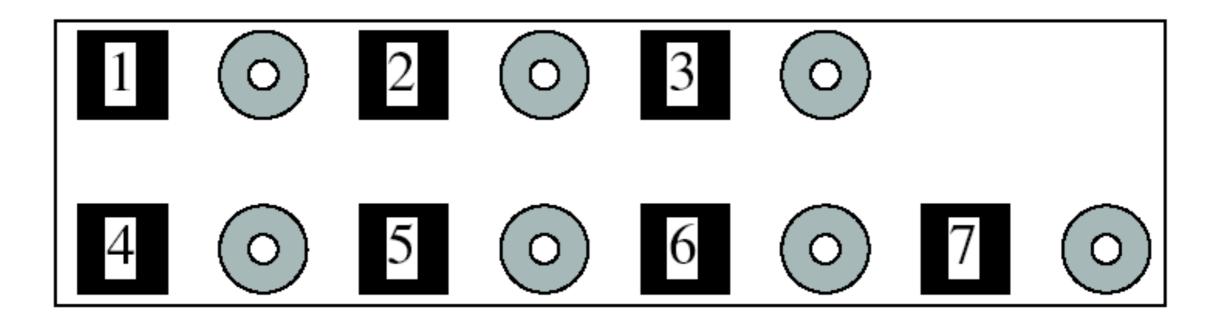
Gestalt factors



Grouping by occlusion

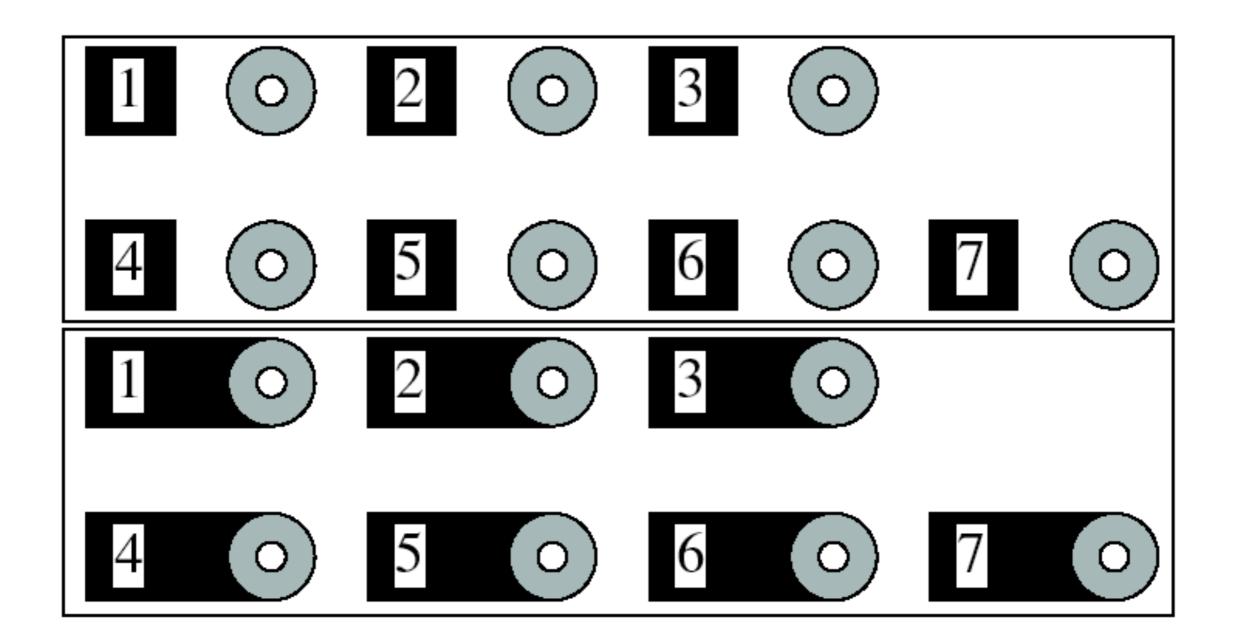


Grouping phenomena in real life



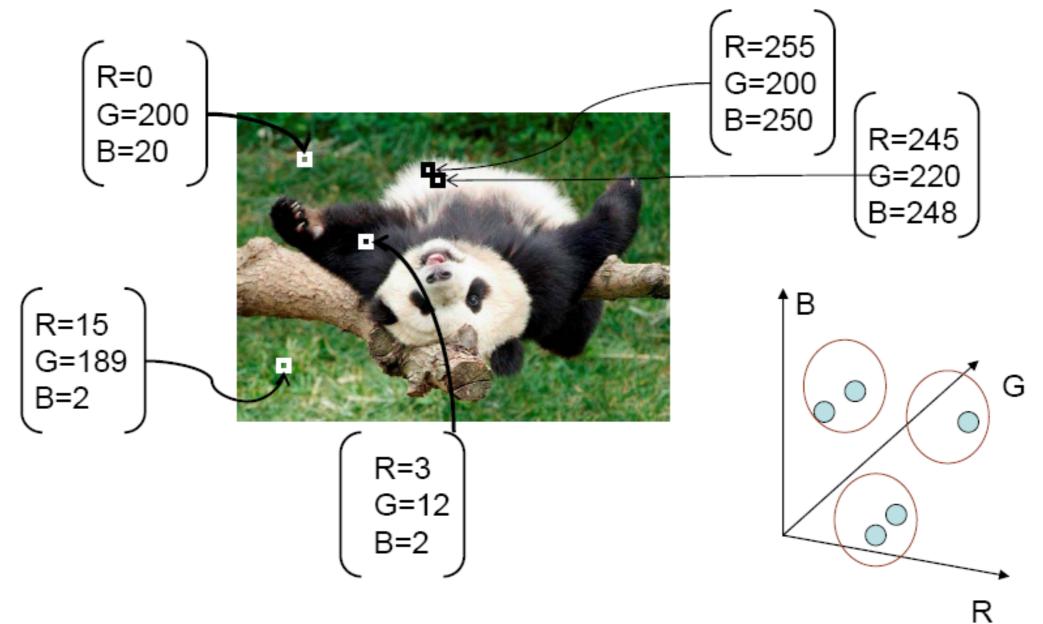
A Berkeley elevator example from D.A. Forsyth

Grouping phenomena in real life



A Berkeley elevator example from D.A. Forsyth

· Cluster similar pixels (features) together

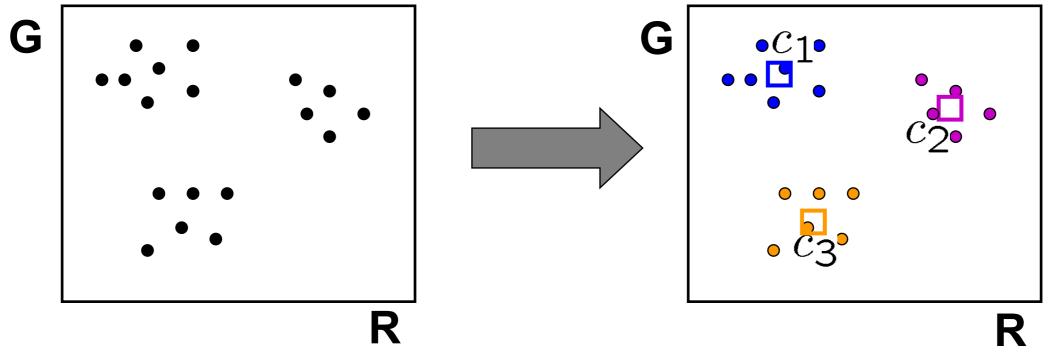


- Simplest methods:
- Agglomerative clustering (Merge):
 - grouping stuff that belongs together, or
 - iteratively merging the closest clusters
- Divisive clustering (Split):
 - split clusters recursively, or
 - iteratively split the cluster that yields the most diverse cluster
- Split and merge

Clustering

How to choose the representative colors?

– This is a clustering problem!



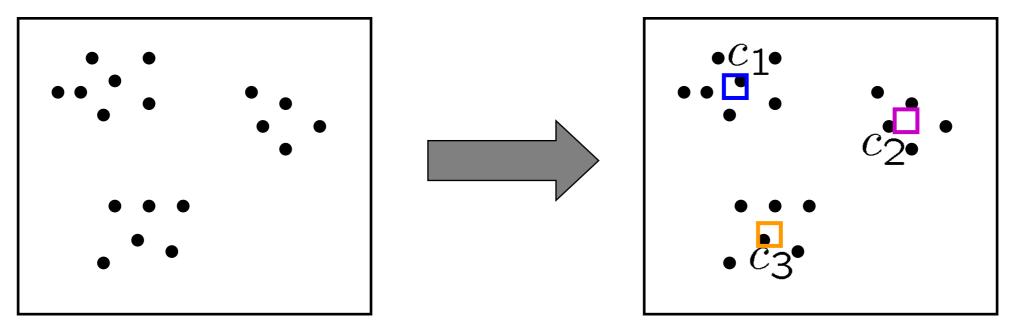
Objective

- Each point should be as close as possible to a cluster center
 - Minimize sum squared distance of each point to closest center

Solution: break it down into subproblems

Suppose I tell you the cluster centers \boldsymbol{c}_i

- Q: how to determine which points to associate with each c_i?
- A: for each point p, choose closest c_i



Suppose I tell you the points in each cluster

- Q: how to determine the cluster centers?
- A: choose c_i to be the mean of all points in the cluster

K-means clustering

• K-means clustering algorithm

1.Randomly initialize the cluster centers, c_1, \ldots, c_K

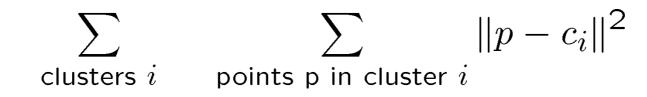
- 2. Given cluster centers, determine points in each cluster
 - For each point p, find the closest c_i . Put p into cluster i

3. Given points in each cluster, solve for c_i

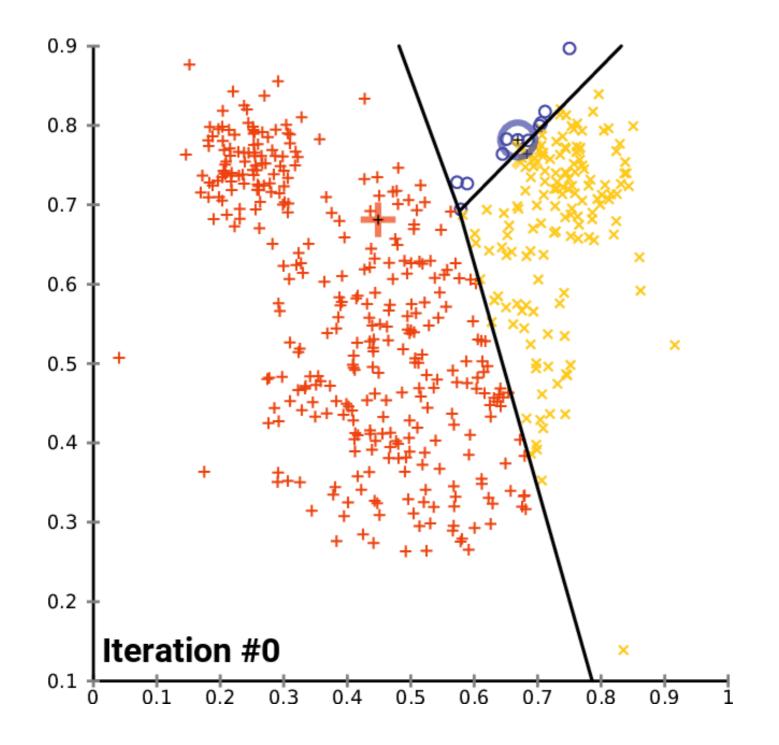
– Set c_i to be the mean of points in cluster i

4. If c_i have changed, repeat Step 2

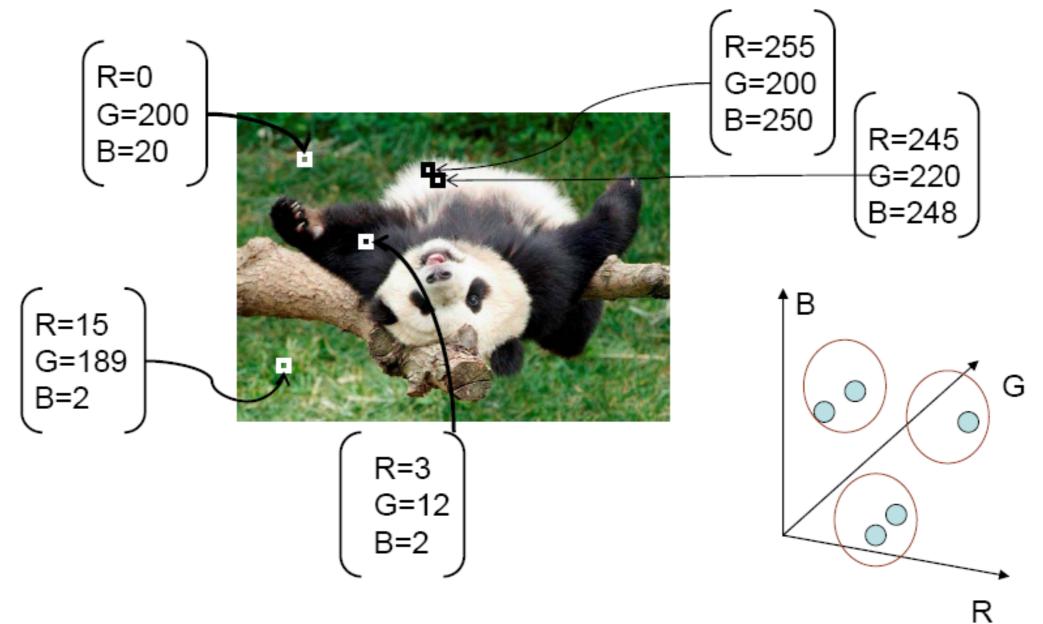
- Properties
 - Will always converge to some solution
 - Can be a "local minimum"
 - does not always find the global minimum of objective function:



K-means



· Cluster similar pixels (features) together

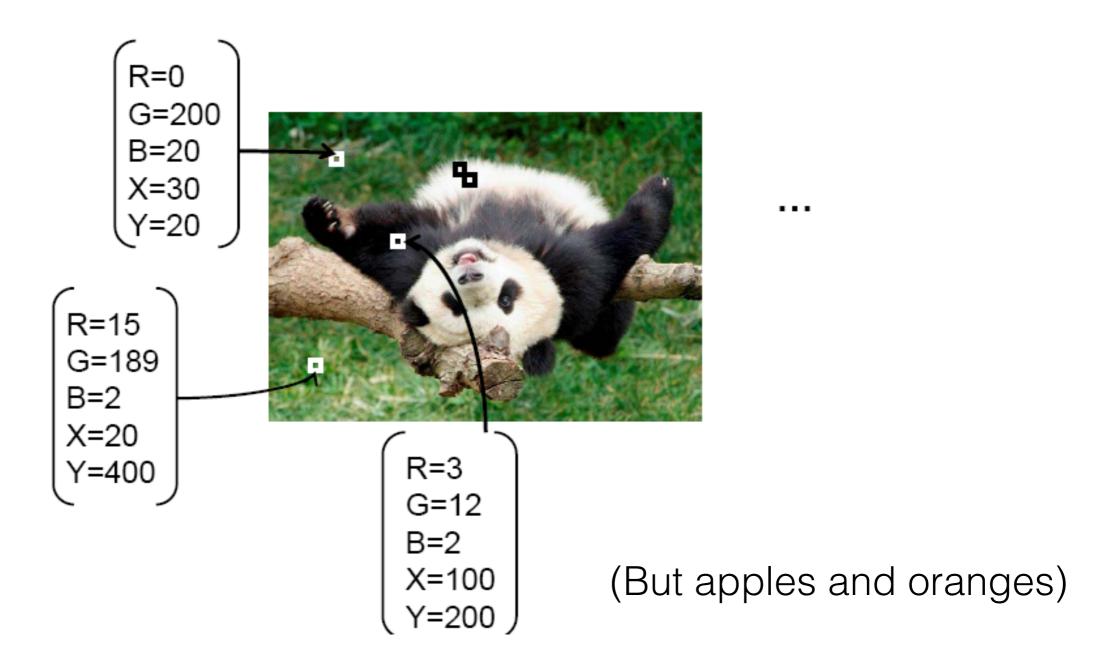


- K-means clustering based on intensity or color is essentially vector quantization of the image attributes
 - Clusters don't have to be spatially coherent

Intensity-based clusters

Color-based clusters

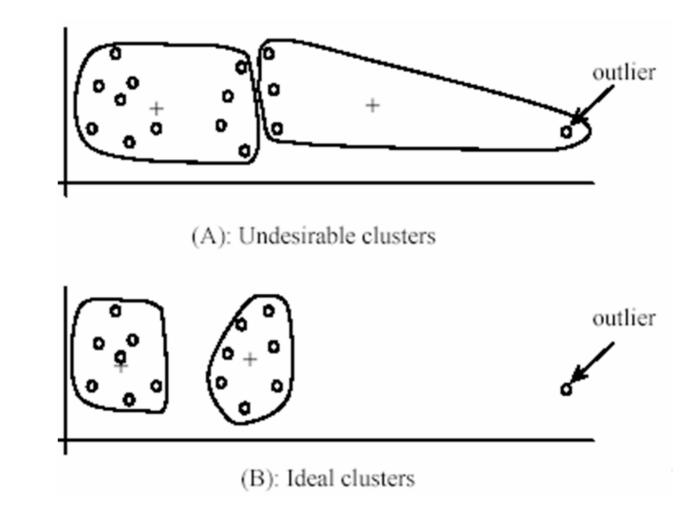
Cluster similar pixels (features) together



 Clustering based on (r,g,b,x,y) values enforces more spatial coherence

K-Means for segmentation

- Pros
 - Very simple method
 - Converges to a local minimum of the error function
- Cons
 - Memory-intensive
 - Need to pick K
 - Sensitive to initialization
 - Sensitive to outliers
 - Only finds "spherical" clusters



Probabilistic clustering

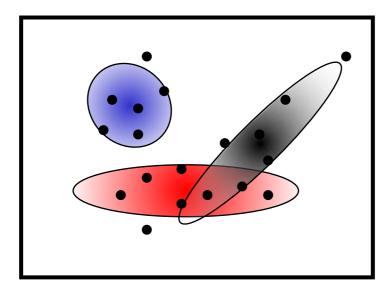
Basic questions

- what is the probability that a point \boldsymbol{x} is in cluster m?
- what is the shape of each cluster?
- K-means doesn't answer these questions

Basic idea

- instead of treating the data as a bunch of points, assume that they are all generated by sampling a continuous function
- This function is called a generative model
 - defined by a vector of parameters $\pmb{\theta}$

Mixture of Gaussians



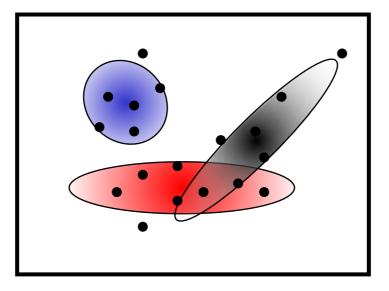
One generative model is a mixture of Gaussians (MOG)

- K Gaussian blobs with means μ_b covariance matrices V_b , dimension d
 - blob *b* defined by: $P(x | \mu_b, V_b) = \frac{1}{\sqrt{(2\pi)^d |V_b|}} e^{-\frac{1}{2}(x \mu_b)^T V_b^{-1}(x \mu_b)}$
- blob **b** is selected with probability $lpha_b$
- the likelihood of observing ${f x}$ is a weighted mixture of Gaussians

$$P(x \mid \theta) = \sum_{b=1}^{K} \alpha_b P(x \mid \mu_b, V_b)$$

where $\theta = [\alpha_1, ..., \alpha_K, \mu_1, ..., \mu_K, V_1, ..., V_k]$

Expectation maximization (EM)



Goal

- find blob parameters θ that maximize the likelihood function:

$$P(data|\theta) = \prod_{x} P(x|\theta)$$

Approach:

- 1. E step: given current guess of blobs, compute ownership of each point
- 2. M step: given ownership probabilities, update blobs to maximize likelihood function
- 3. repeat until convergence

EM details

E-step P(b)- compute probability that point **x** is in blob b, given current guess of **9** $P(b|x) \longrightarrow P(b|x, \mu_b, V_b) = \frac{\alpha_b P(x|\mu_b, V_b)}{\sum_{i=1}^{K} \alpha_i P(x|\mu_i, V_i)} \longleftarrow P(x|b)$

EM details

E-step

- compute probability that point ${f x}$ is in blob b, given current guess of ${f heta}$

$$P(b|x,\mu_b,V_b) = \frac{\alpha_b P(x|\mu_b,V_b)}{\sum_{i=1}^{K} \alpha_i P(x|\mu_i,V_i)}$$

M-step (maximize the log likelihood)

- compute probability that blob b is selected

$$\alpha_b^{new} = \frac{1}{N} \sum_{i=1}^N P(b|x_i, \mu_b, V_b)$$
 N data points

mean of blob b

$$\mu_b^{new} = \frac{\sum_{i=1}^N x_i P(b|x_i, \mu_b, V_b)}{\sum_{i=1}^N P(b|x_i, \mu_b, V_b)}$$

- covariance of blob b

$$V_b^{new} = \frac{\sum_{i=1}^N (x_i - \mu_b^{new}) (x_i - \mu_b^{new})^T P(b|x_i, \mu_b, V_b)}{\sum_{i=1}^N P(b|x_i, \mu_b, V_b)}$$

Applications of EM

Turns out this is useful for all sorts of problems

- any clustering problem
- any model estimation problem
- missing data problems
- finding outliers

. . .

- segmentation problems
 - segmentation based on color
 - segmentation based on motion
 - foreground/background separation

• (probabilistic problem formulation)

Problems with EM

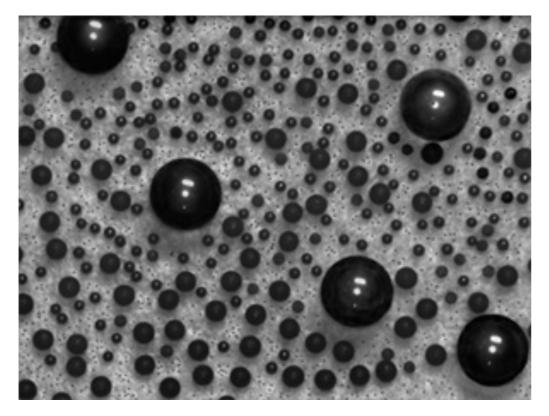
- 1. Local minima
- 2. Need to know number of segments

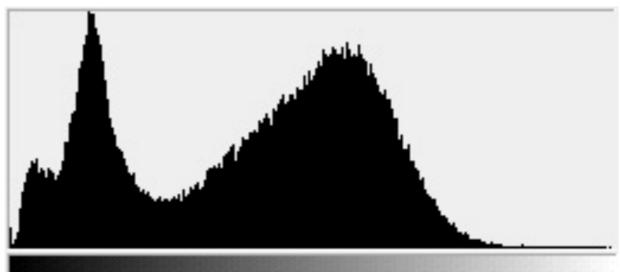
3. Need to assume generative model

Histogram-based segmentation

Goal

- Break the image into K regions (segments)
- Solve this by reducing the number of colors to K and mapping each pixel to the closest color

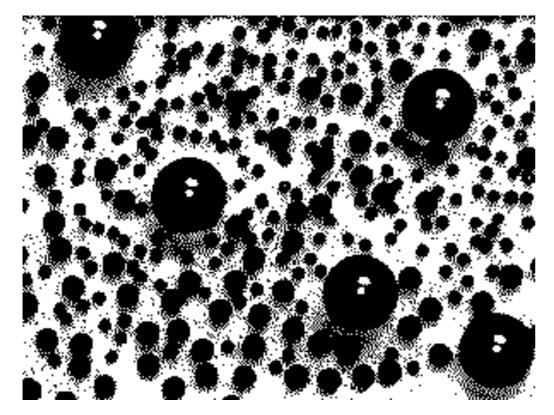


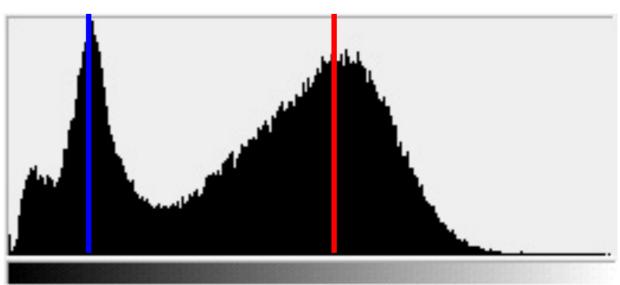


Histogram-based segmentation

Goal

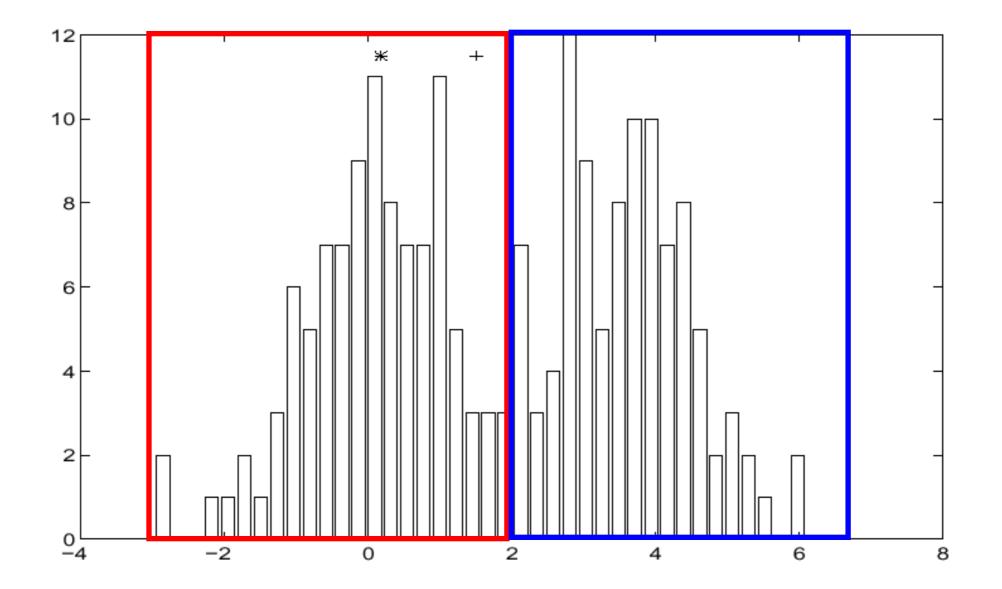
- Break the image into K regions (segments)
- Solve this by reducing the number of colors to K and mapping each pixel to the closest color





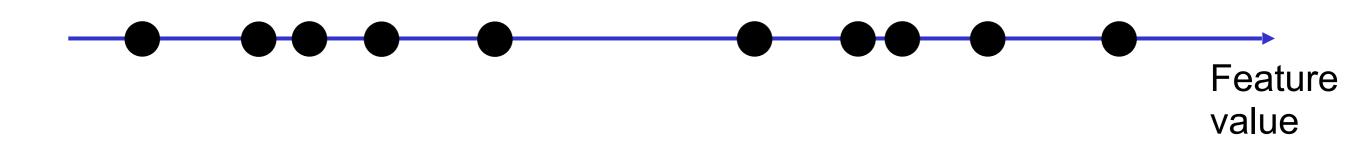
Here's what it looks like if we use two colors

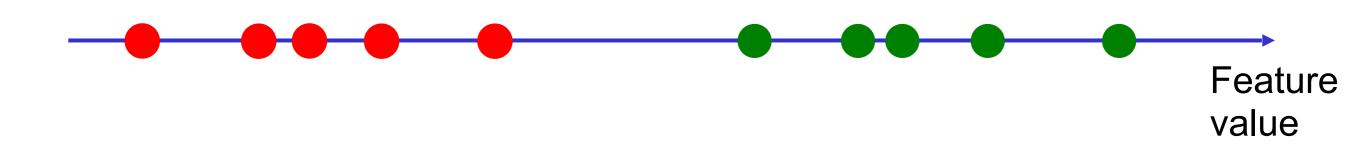
Finding Modes in a Histogram



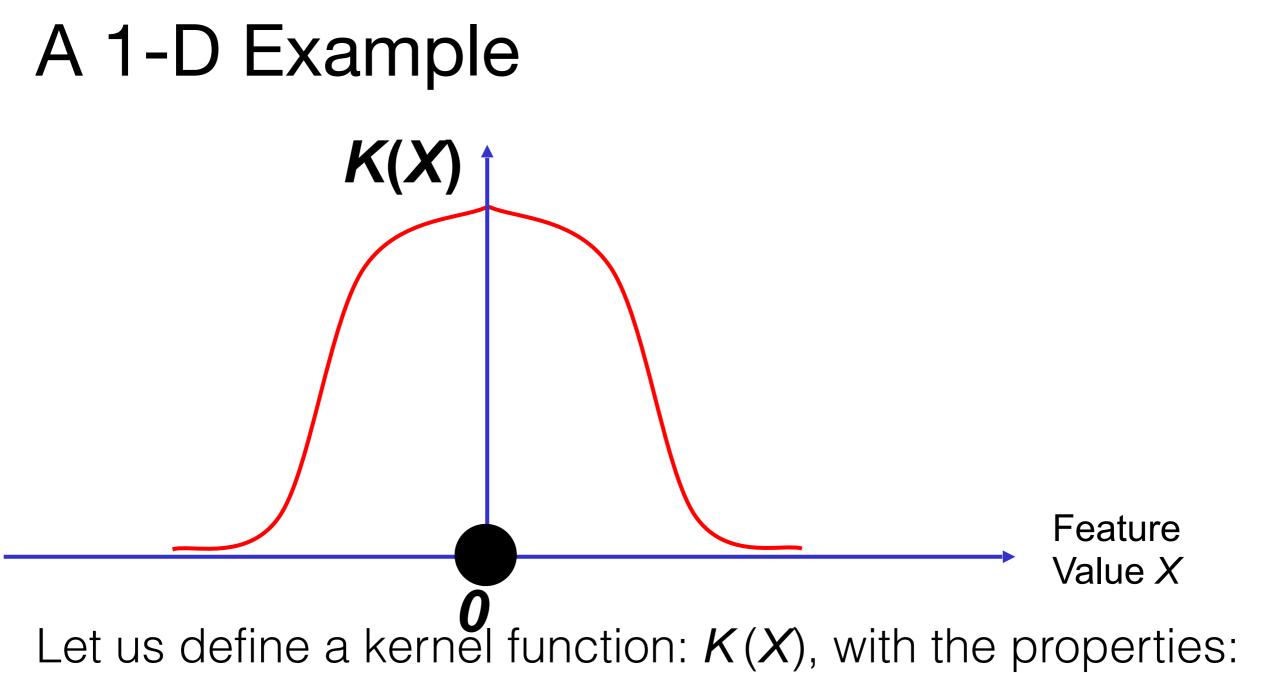
How Many Modes Are There? What are they? Which points belong with which modes?

- Easy to see, hard to compute

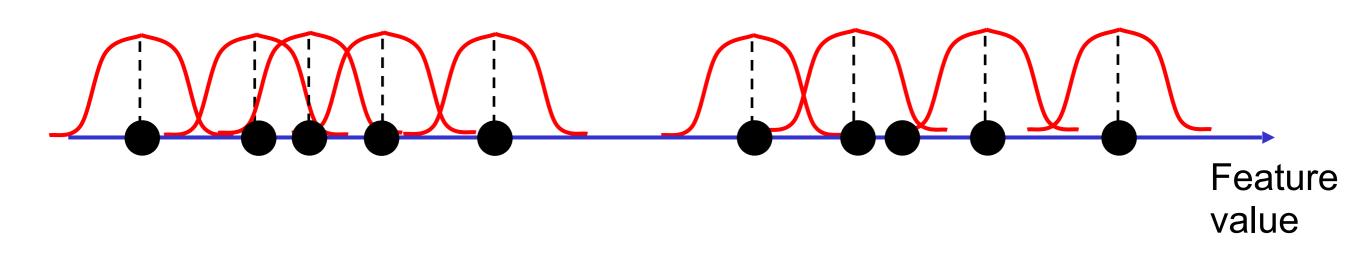




- "Obviously", we would like to generate two groups, corresponding to the two parts of the feature space in which we have a *high density* of points
- How can we capture this notion of "high density" → kernel density estimation

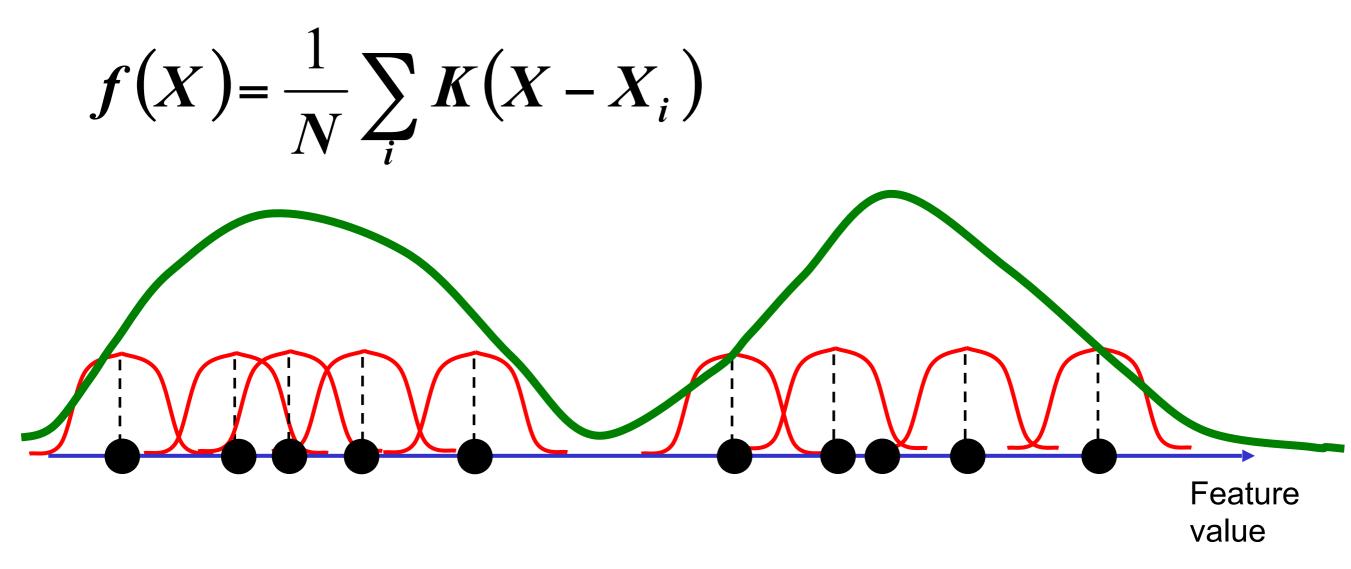


- $\mathbf{V} = \mathbf{V} + \mathbf{v} +$
- K decays to zero far from 0
- *K* is maximum at 0
- *K* is symmetric

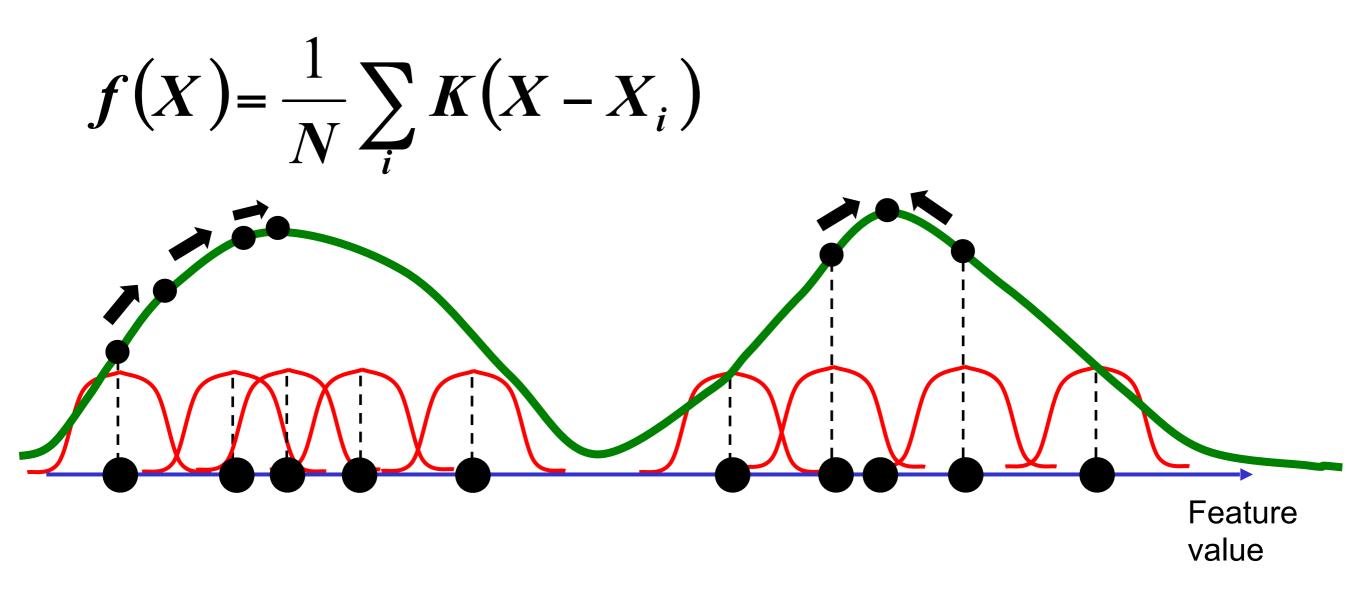


• We can define the kernel at each data point and average the result into a single function:

$$f(X) = \frac{1}{N} \sum_{i} K(X - X_{i})$$



- (Should be normalized to unit integral)
- The maxima of *f* (the modes of the pdf) correspond to the clusters in the data



- If we move each point in the direction of the gradient, we will converge to the closest mode
- How can we do this efficiently?

Basic algorithm: gradient ascent

• For i = 1, ..., N

$$X \leftarrow X_i$$

• Repeat

$$X \leftarrow X_i + \lambda \nabla f(X) = X_i + \frac{\lambda}{N} \sum_i \nabla K \left(X - X_i \right)$$

until X does not change

Example kernels

Uniform:

$$K_U(\mathbf{x}) = \begin{cases} C & \|\mathbf{x}\| \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Gaussian:

$$K_N(\mathbf{x}) = c \cdot \exp\left(-\frac{1}{2} \|\mathbf{x}\|^2\right)$$

Epanechnikov:

$$K_E(\mathbf{x}) = \begin{cases} c\left(1 - \|\mathbf{x}\|^2\right) & \|\mathbf{x}\| \le 1 \\ 0 & \text{otherwise} \end{cases}$$

0.4

0.3

-2

-1

-2

Bandwith

• Kernel is defined as:

$$\boldsymbol{K}(\boldsymbol{X}) = \boldsymbol{c}\boldsymbol{k}\left(\left\|\frac{\boldsymbol{X}}{\boldsymbol{h}}\right\|^{2}\right)$$

- h is the bandwith of the kernel `
- k is:
 - For Gaussian: $k(t) = e^{-t/2}$
 - For Epanechnikov:

$$k(t) = \begin{cases} (1-t) \text{ if } |t| < 1 \\ 0 \end{cases}$$

Bandwith

• Kernel is defined as:

$$K(X) = ck \left(\left\| \frac{X}{h} \right\|^2 \right)$$

- h is the bandwith of the kernel
- k is:

Bandwidth *h* controls the radius of influence of each data point.

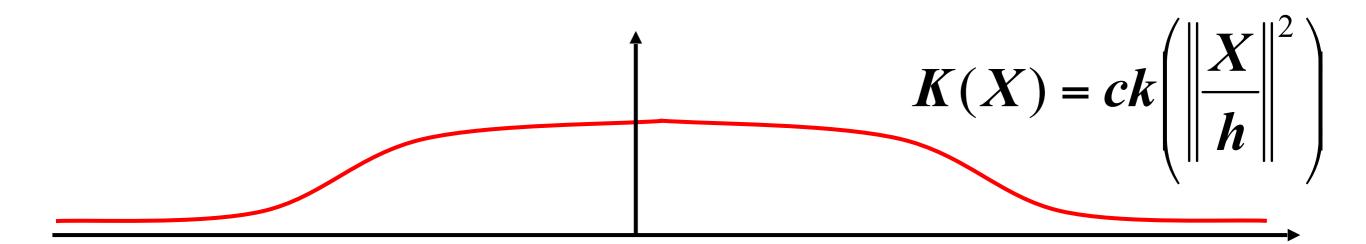
- Too small: Overfits the data points
- Too large: Smoothes out the details of the data

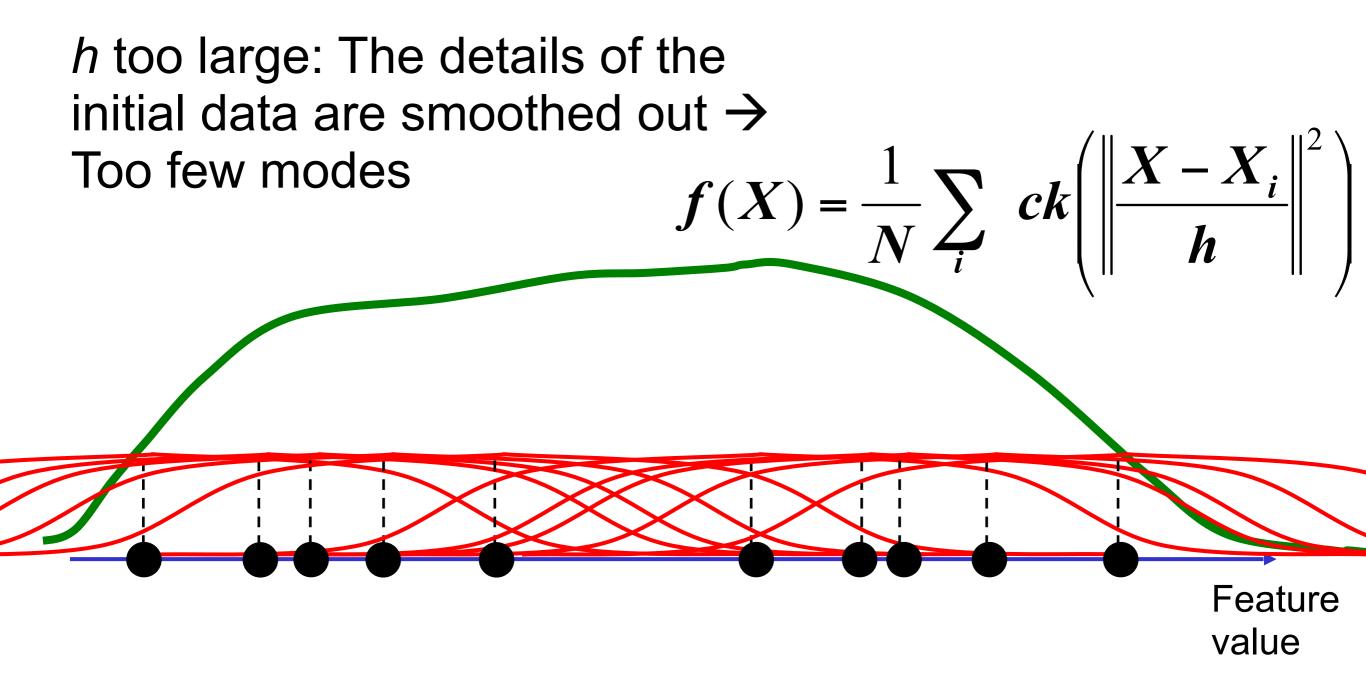
$$K(X) = ck\left(\left\|\frac{X}{h}\right\|^2\right)$$

h too small: The pdf overfits the noise in the data \rightarrow Too many modes

$$f(X) = \sum_{i} ck \left(\left\| \frac{X - X_{i}}{h} \right\|^{2} \right)$$

Feature value





Computing the Gradient

- Now we have a representation of the pdf from which, in principle, we can find the modes by following the gradient.
- How can we do this efficiently?
- Notations:

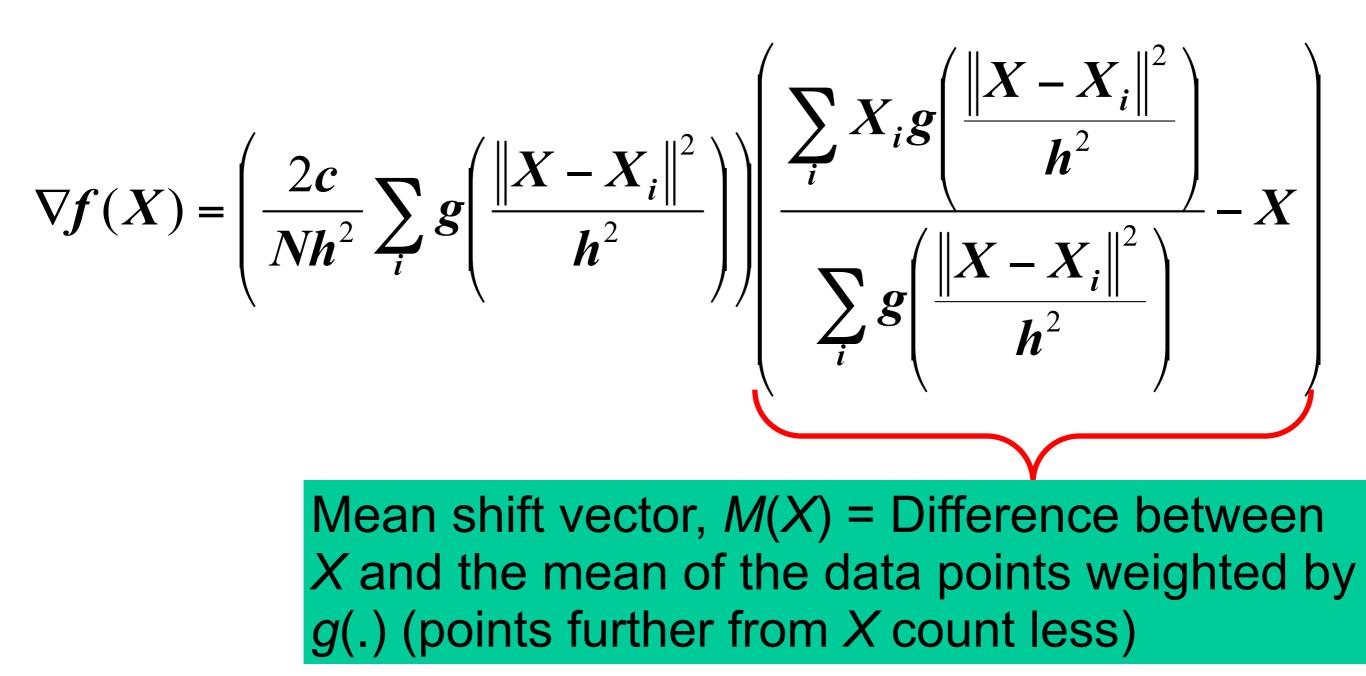
g(t) = -k'(t)

• Gradient of each individual entry in the sum defining *f*:

$$\nabla K(X-X_i) = \nabla \left(ck \left(\frac{\left\| X-X_i \right\|^2}{h^2} \right) \right) = \frac{2c}{h^2} \left(X_i - X \right) g \left(\frac{\left\| X-X_i \right\|^2}{h^2} \right)$$

Computing the Gradient

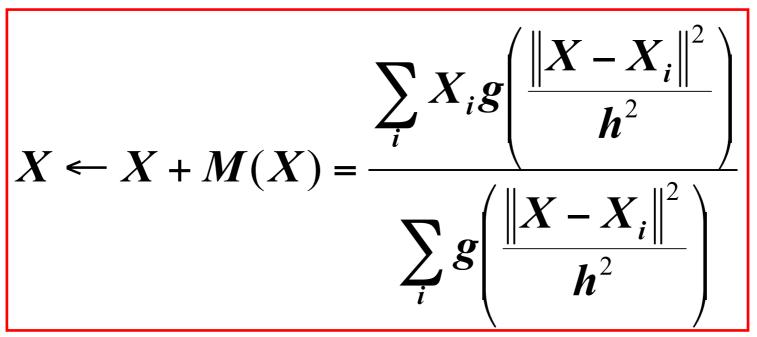
Gradient of the entire pdf:



- Key result: The mean shift vector points in the same direction as the gradient
- Solution: Iteratively move in the direction of the mean shift vector

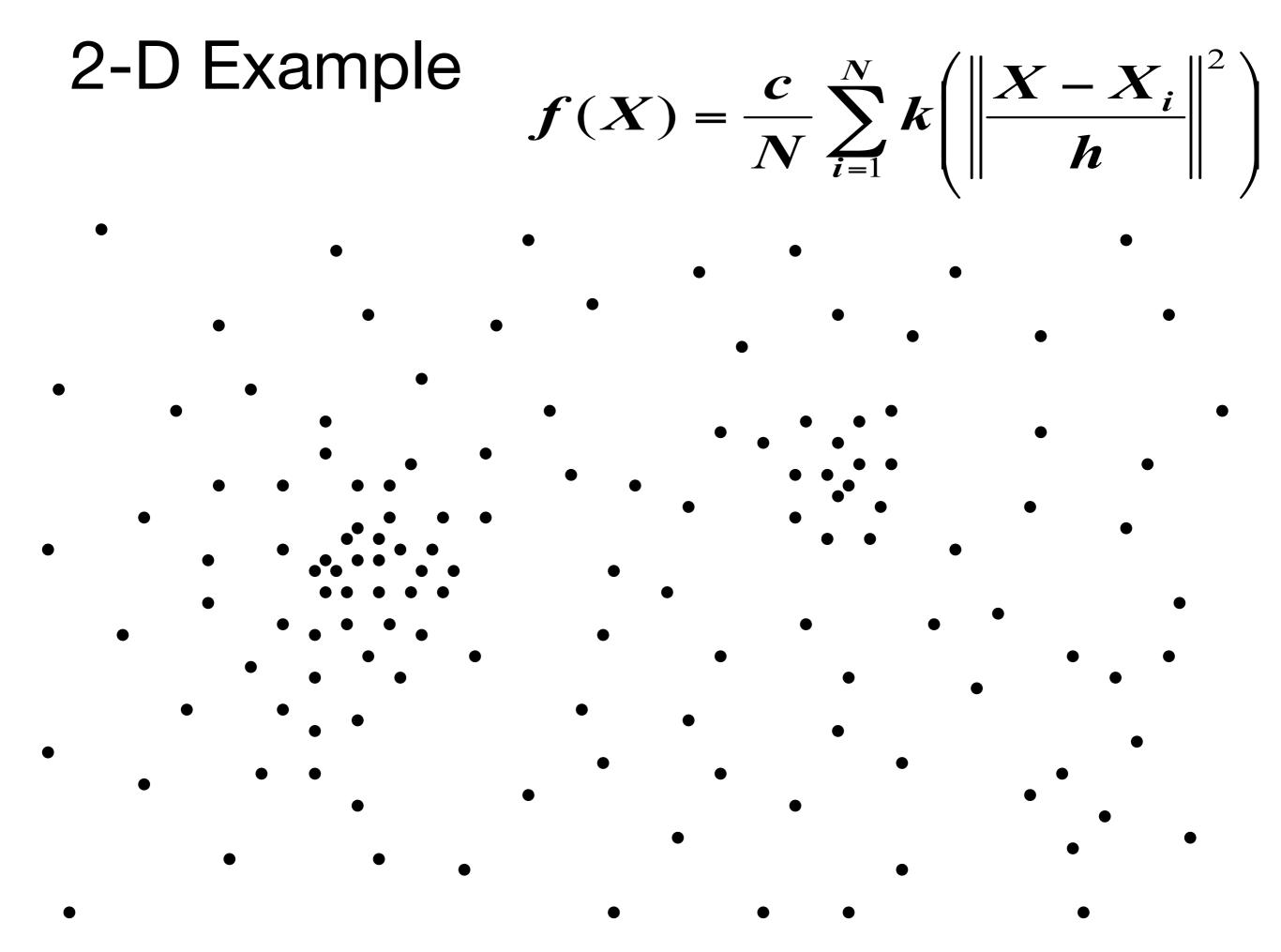
The Mean-Shift Algorithm

- Initialize: Set X to the value of the point to classify
- Repeat (fixed point iterations for zero gradient):
 Move X by the corresponding mean shift vector:

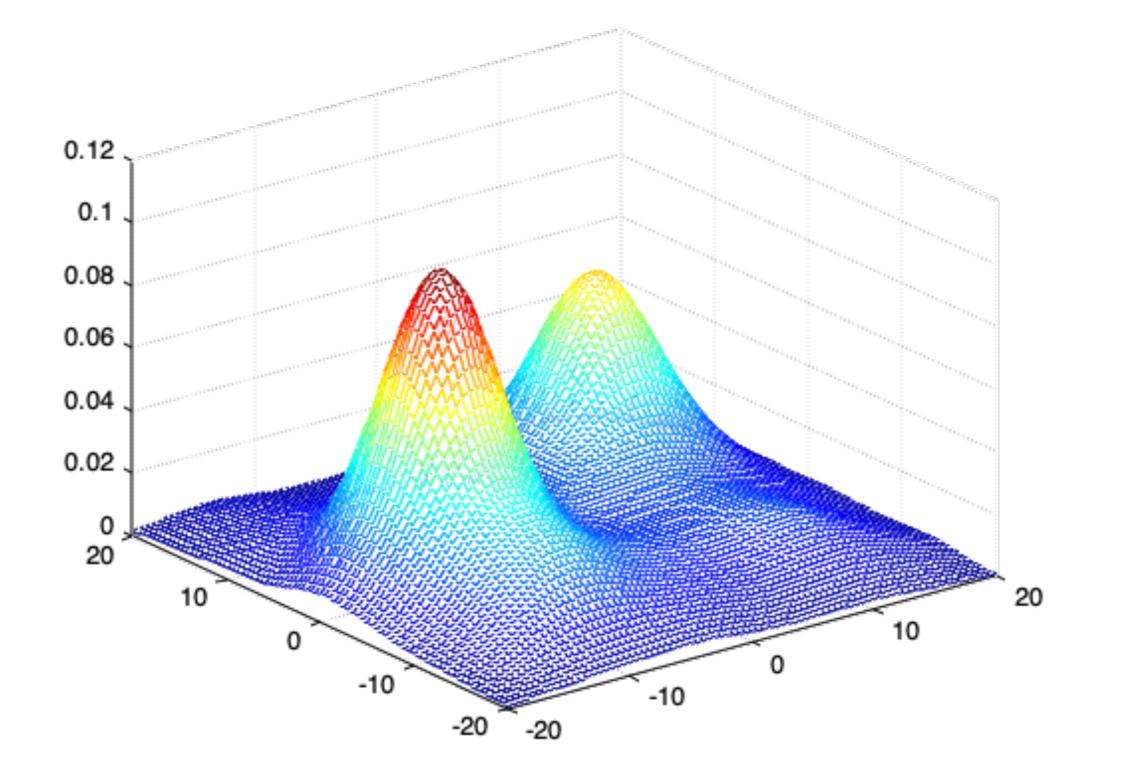


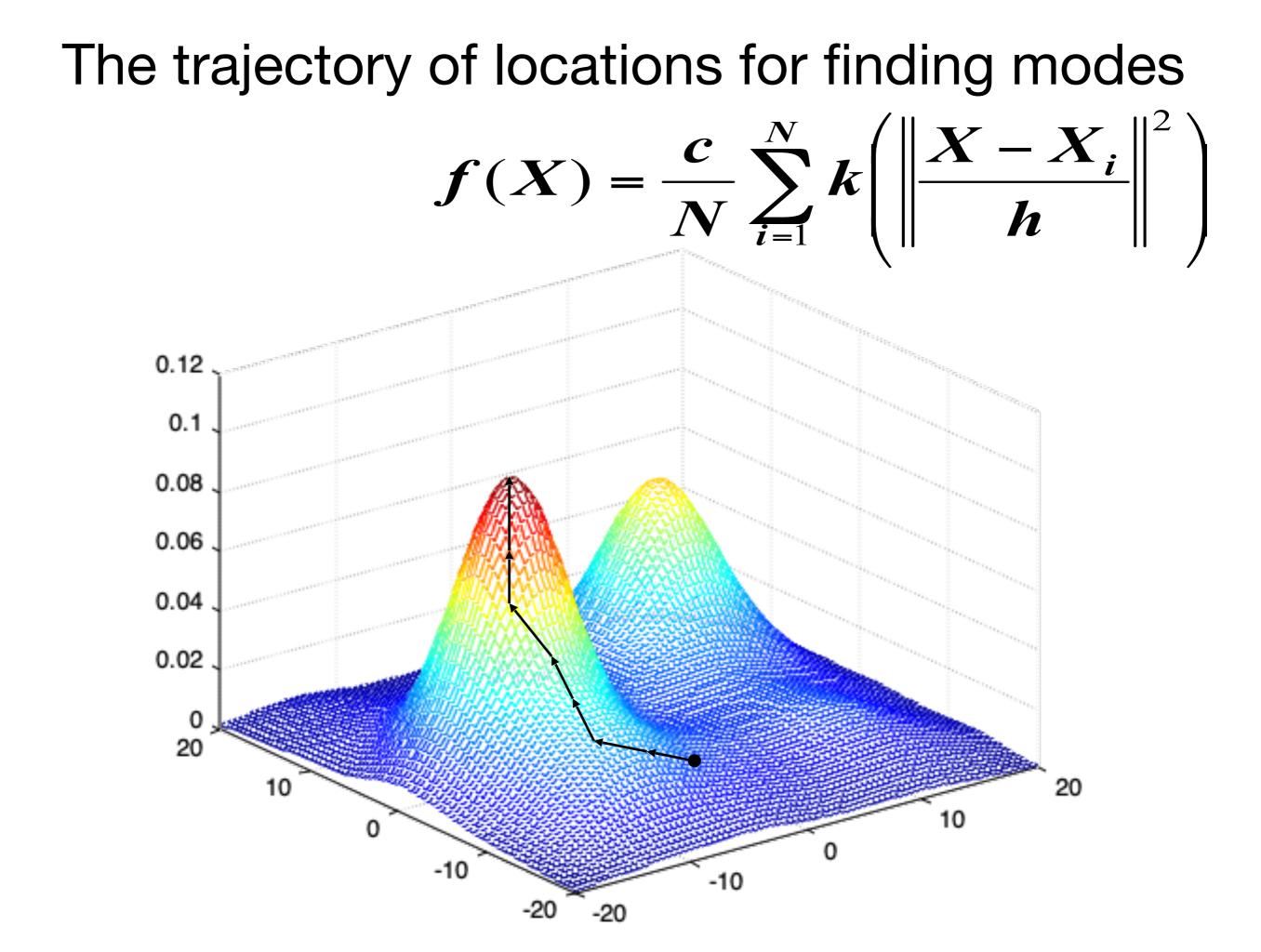
Until X converges

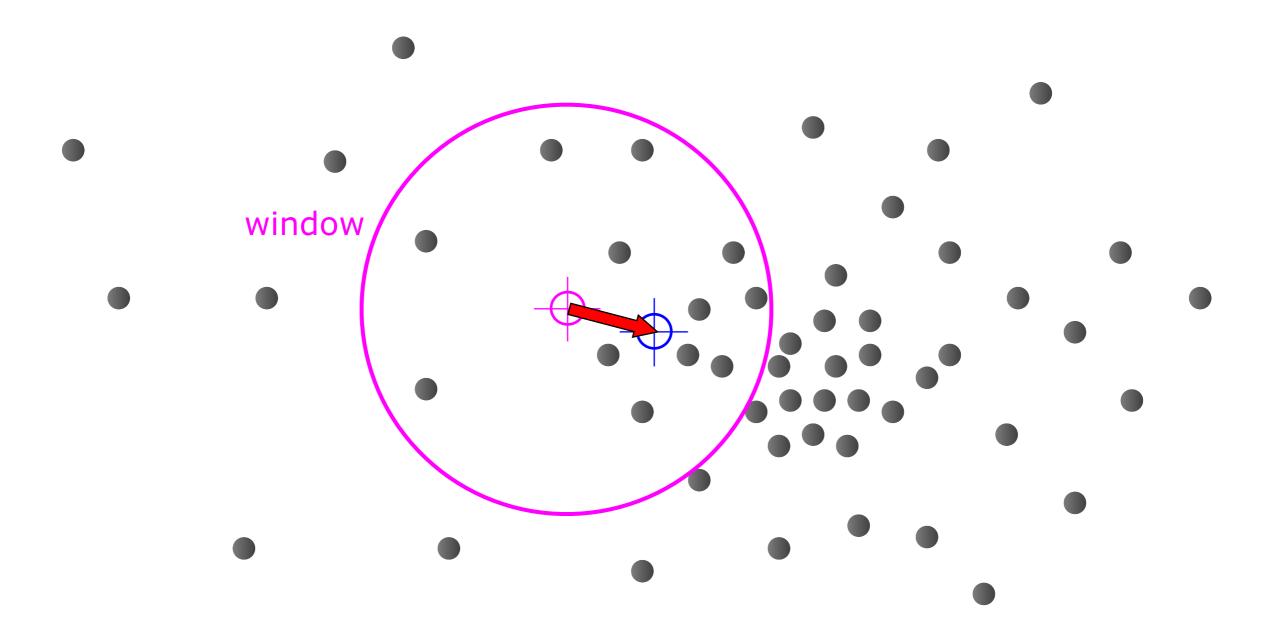
Note: Under mild conditions, convergence is guaranteed.

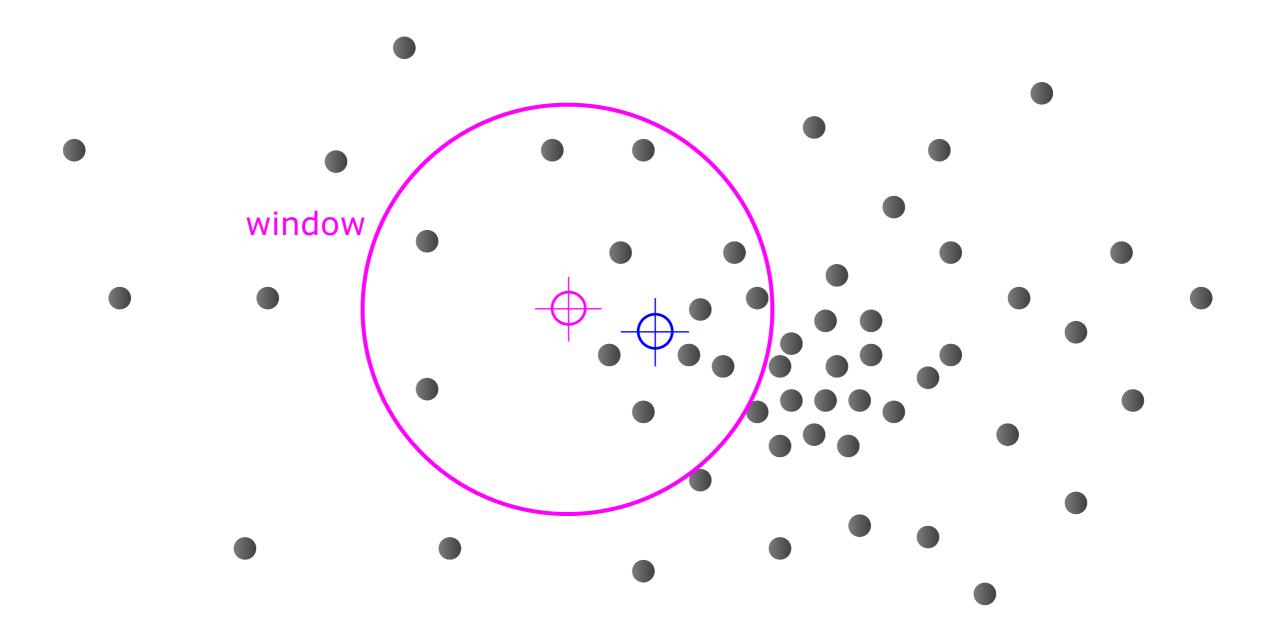


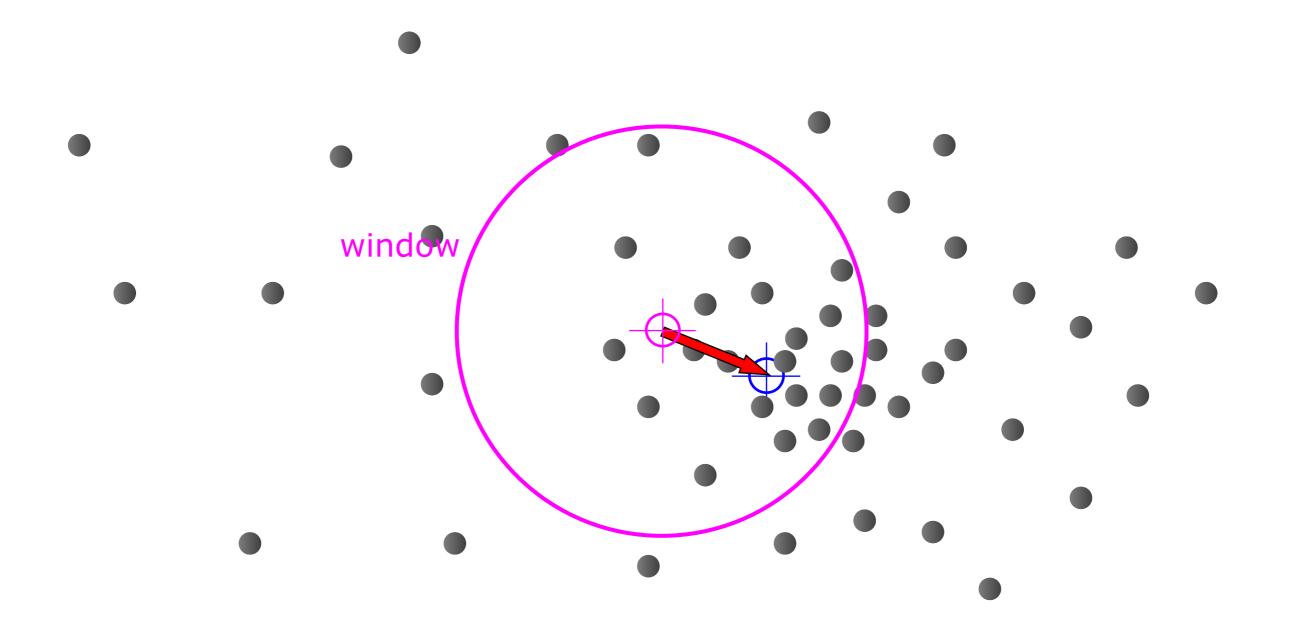
Estimated PDF: $f(X) = \frac{c}{N} \sum_{i=1}^{N} k \left(\left\| \frac{X - X_i}{h} \right\|^2 \right)$

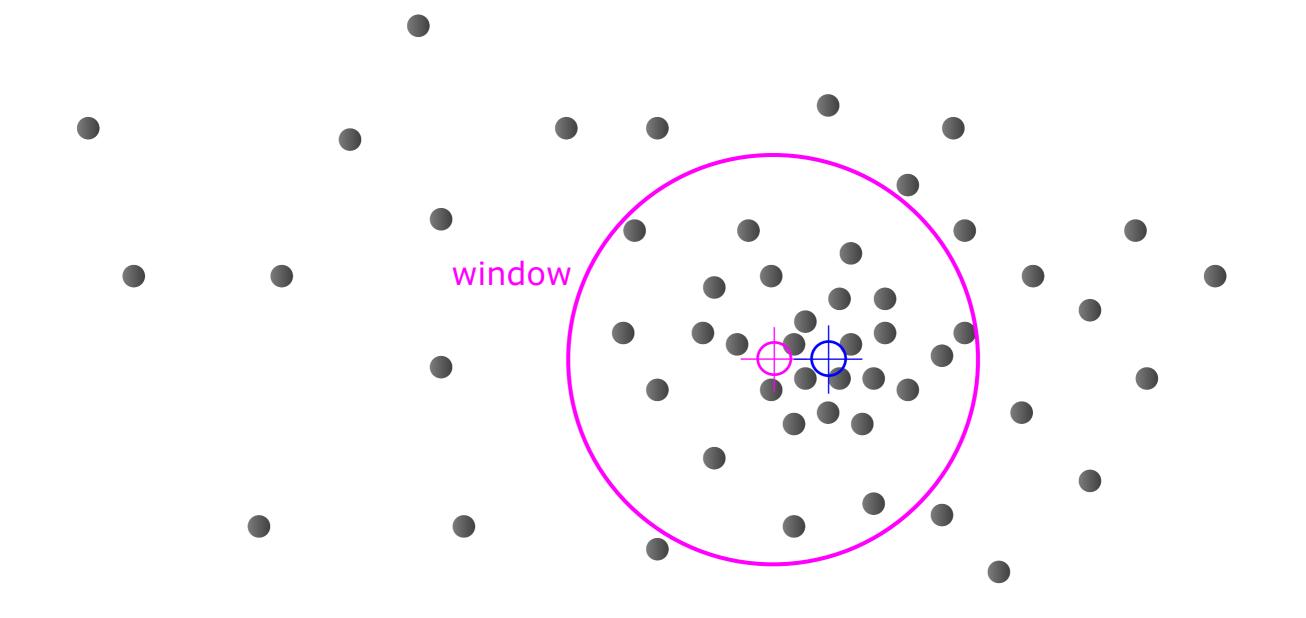


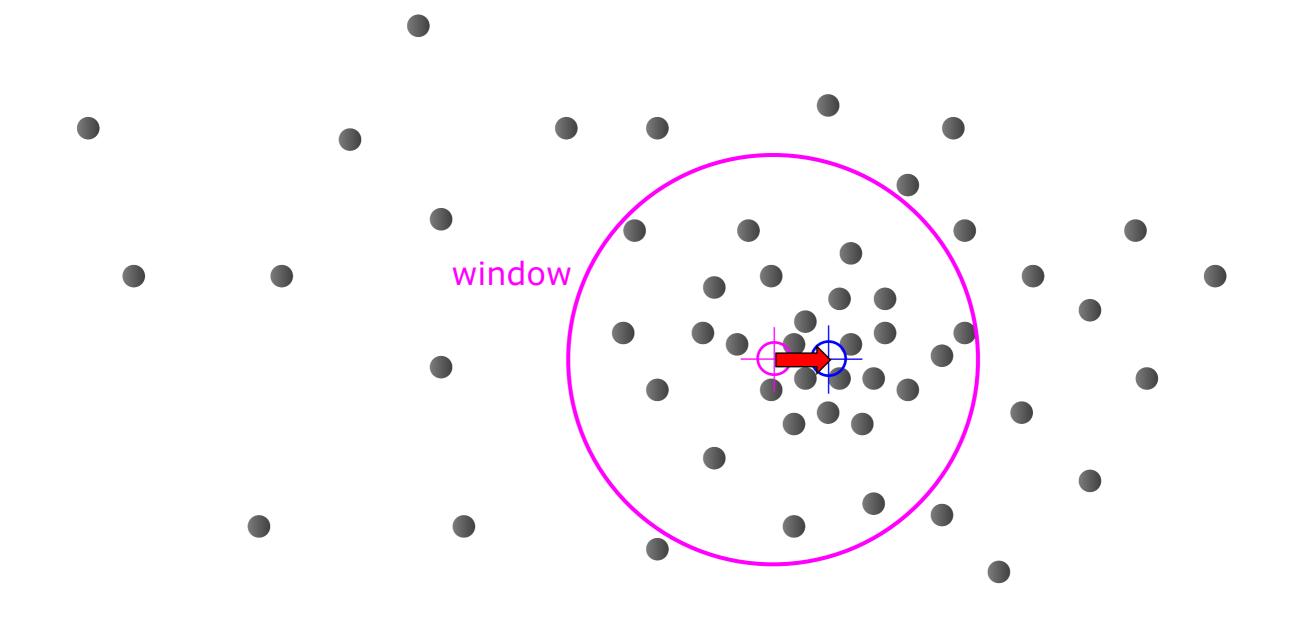


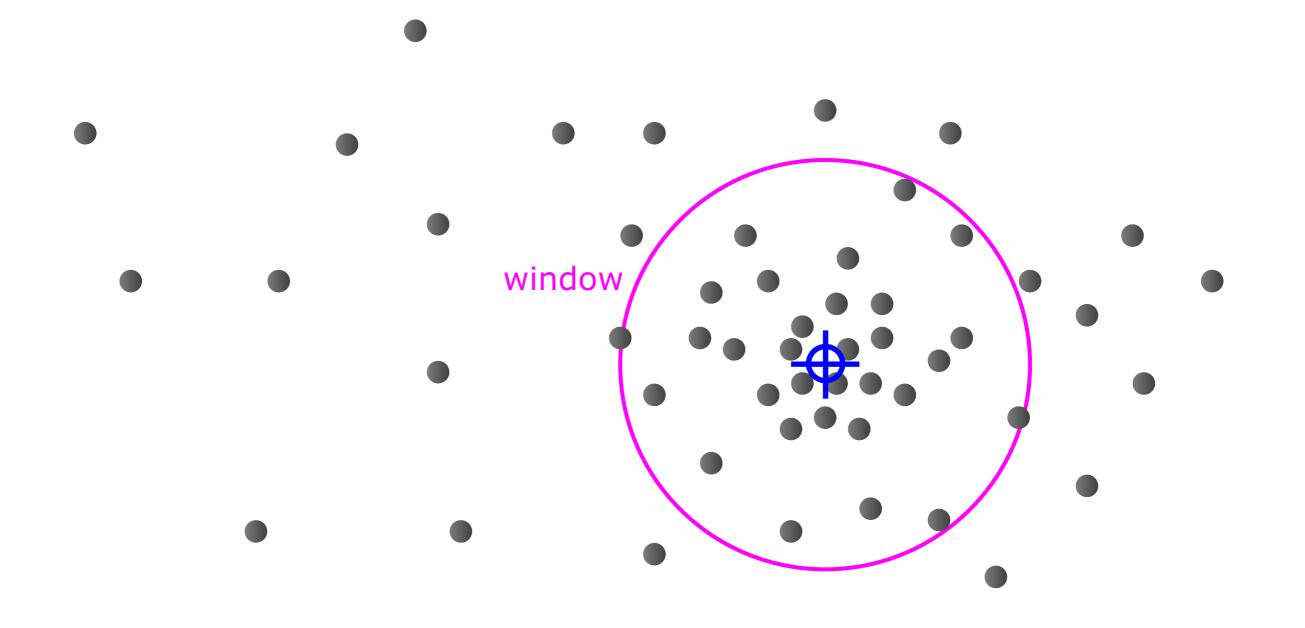


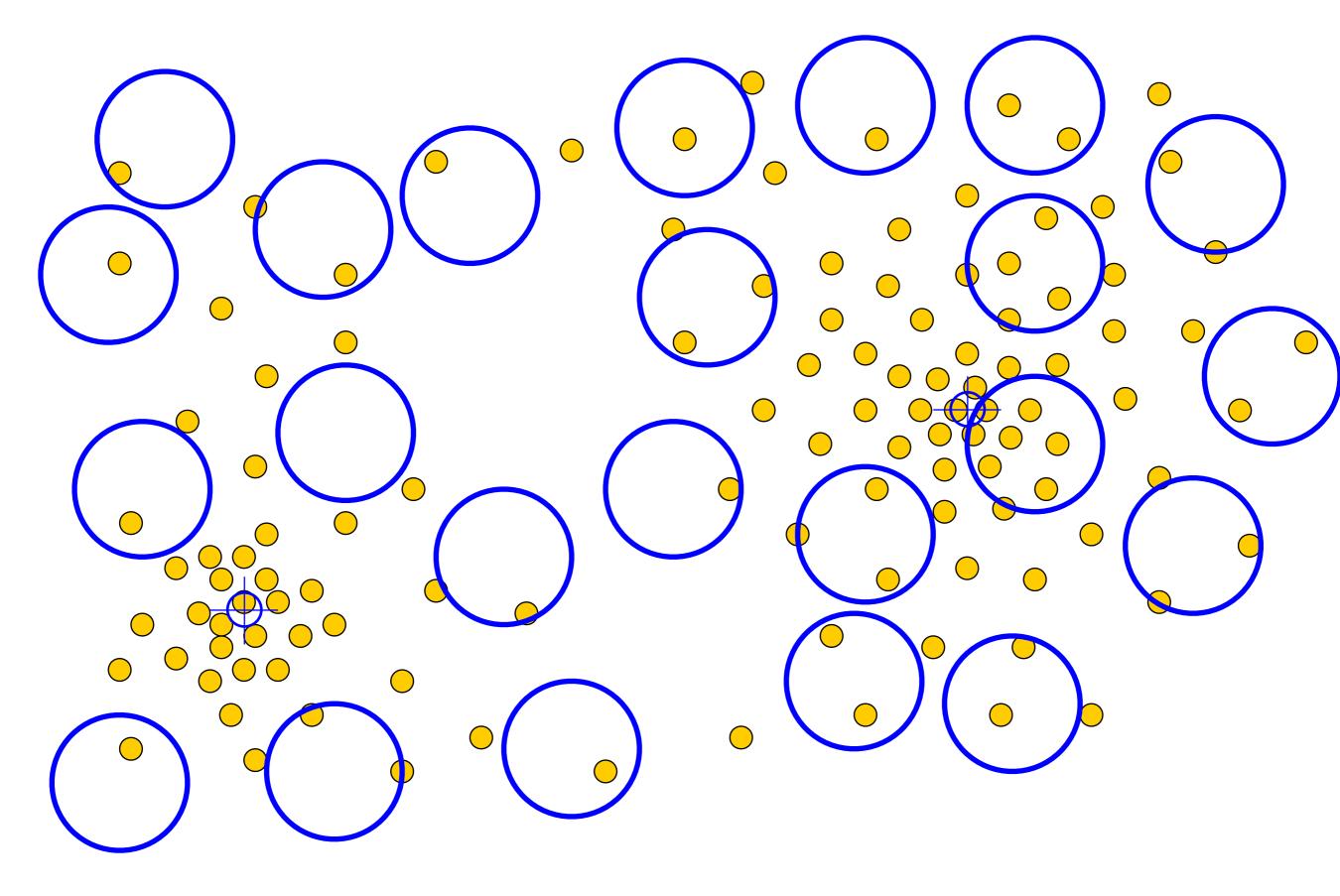






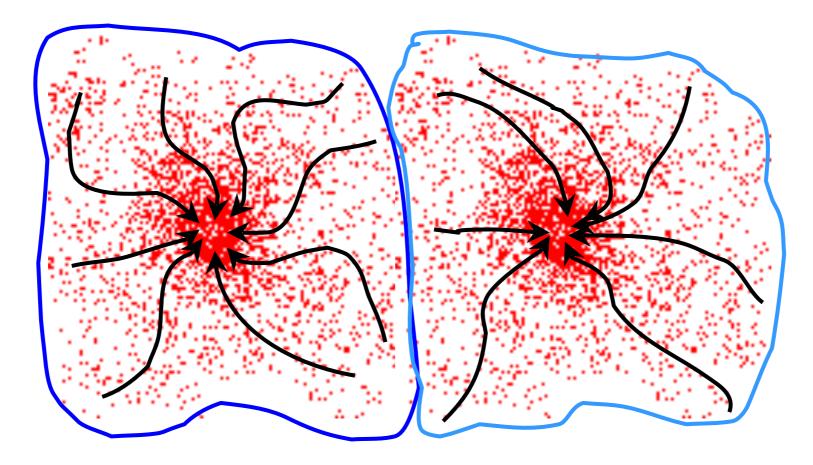






Mean shift clustering

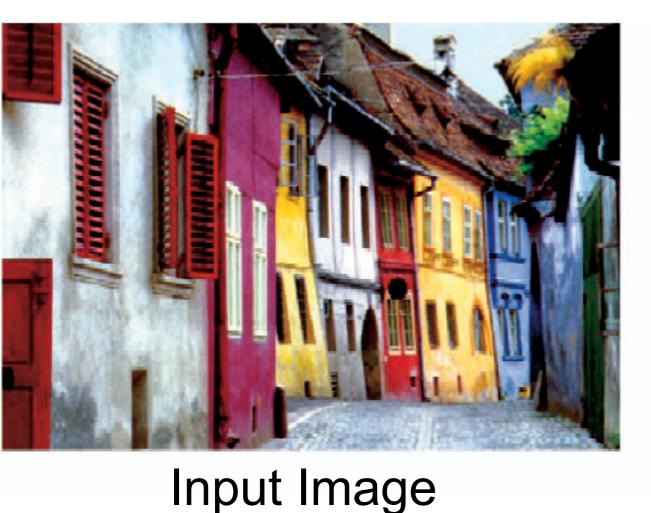
- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode



Example: Color Segmentation

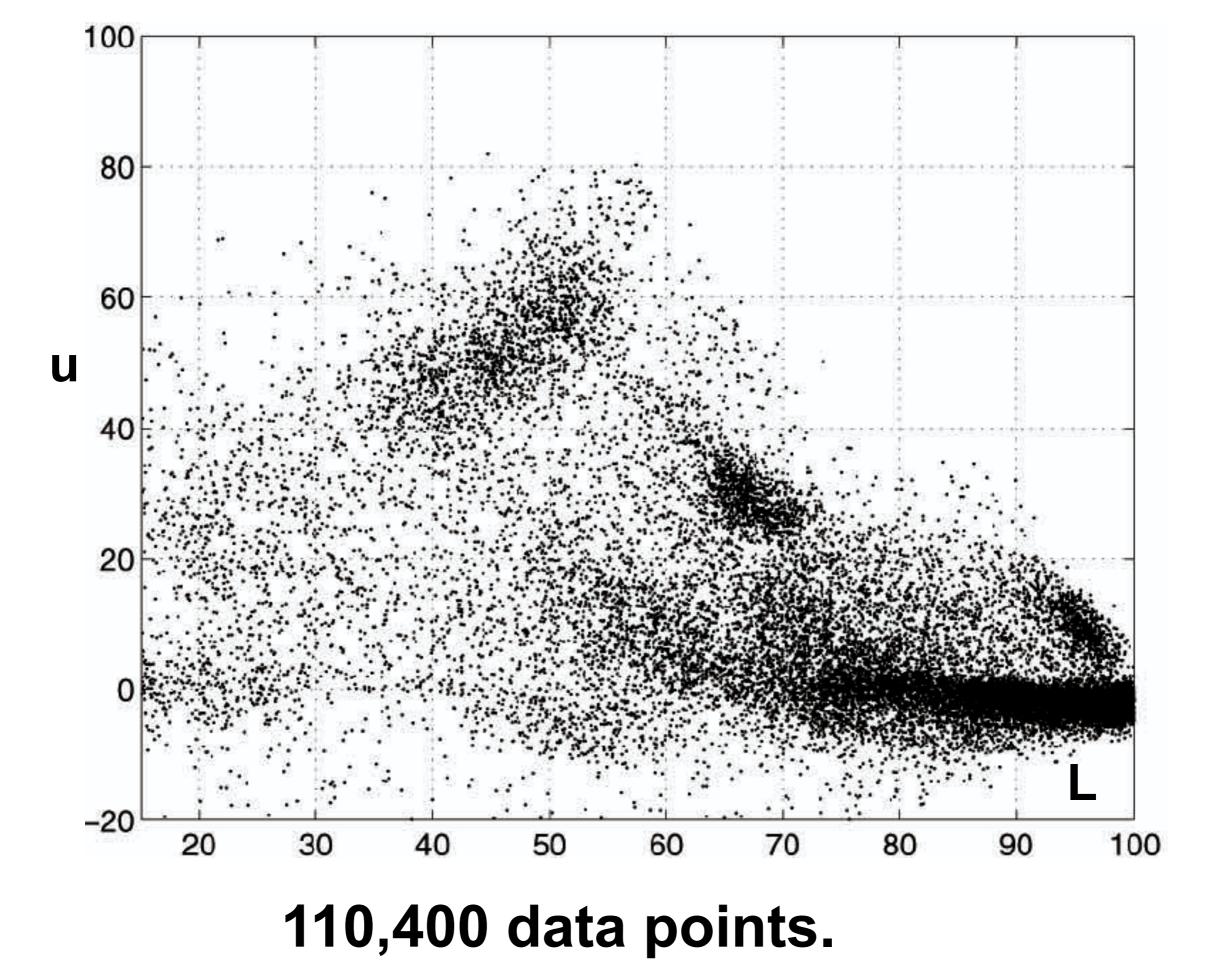
- Feature space: $(L, u, v, x, y) \rightarrow$ Intensity + (u, v) color channels + Position in image (x, y)
- Apply meanshift in the 5-dimensional space
- For each pixel (x_i, y_i) of intensity L_i and color (u_i, v_i) , find the corresponding mode c_k
- All of the pixel (x_i, y_i) corresponding to the same mode c_k are grouped into a single region

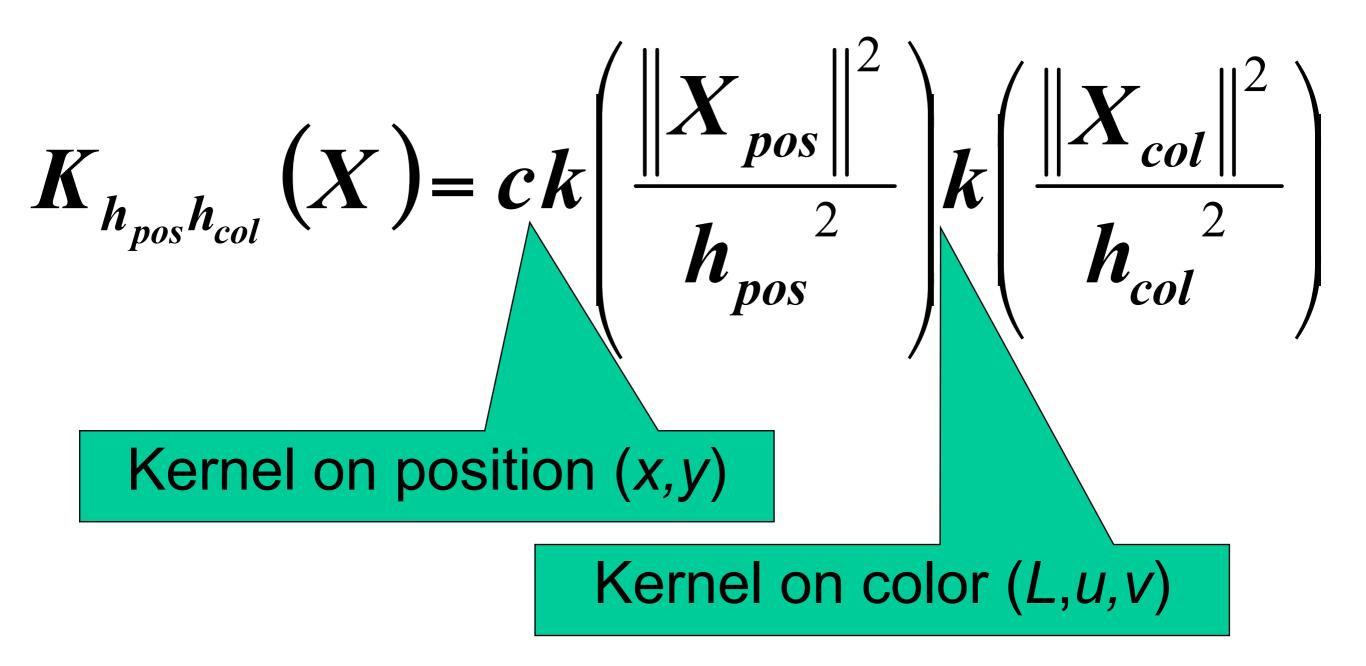
Example: Color Segmentation



V_{0} V_{0} V_{0} V_{0} U_{0} U_{0

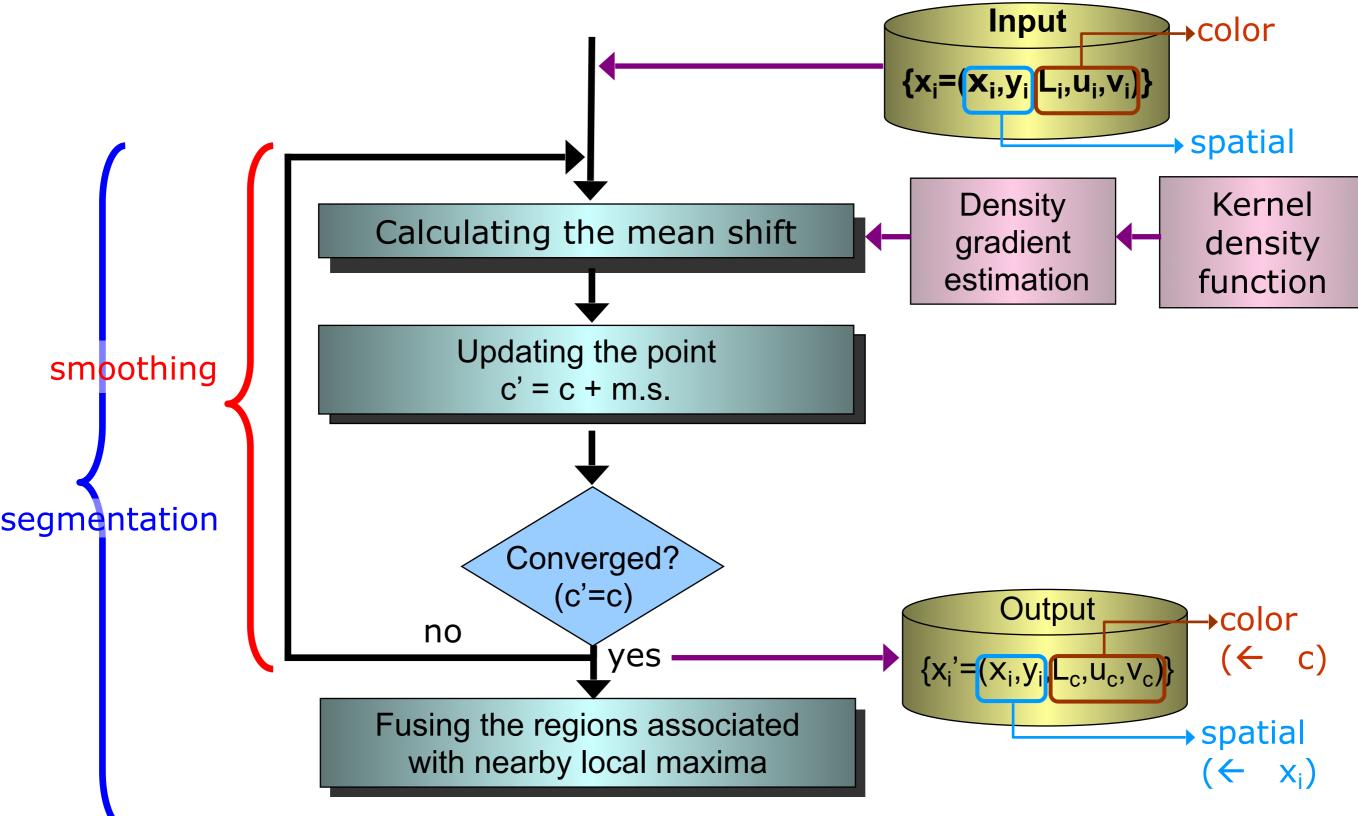
Luv Space ()





- Good news: We don't need to know the number of regions (modes, clusters).
- Bad news: We need to choose the bandwidths $h_{\rm pos}$ and $h_{\rm col}$

Mean Shift for Segmentation



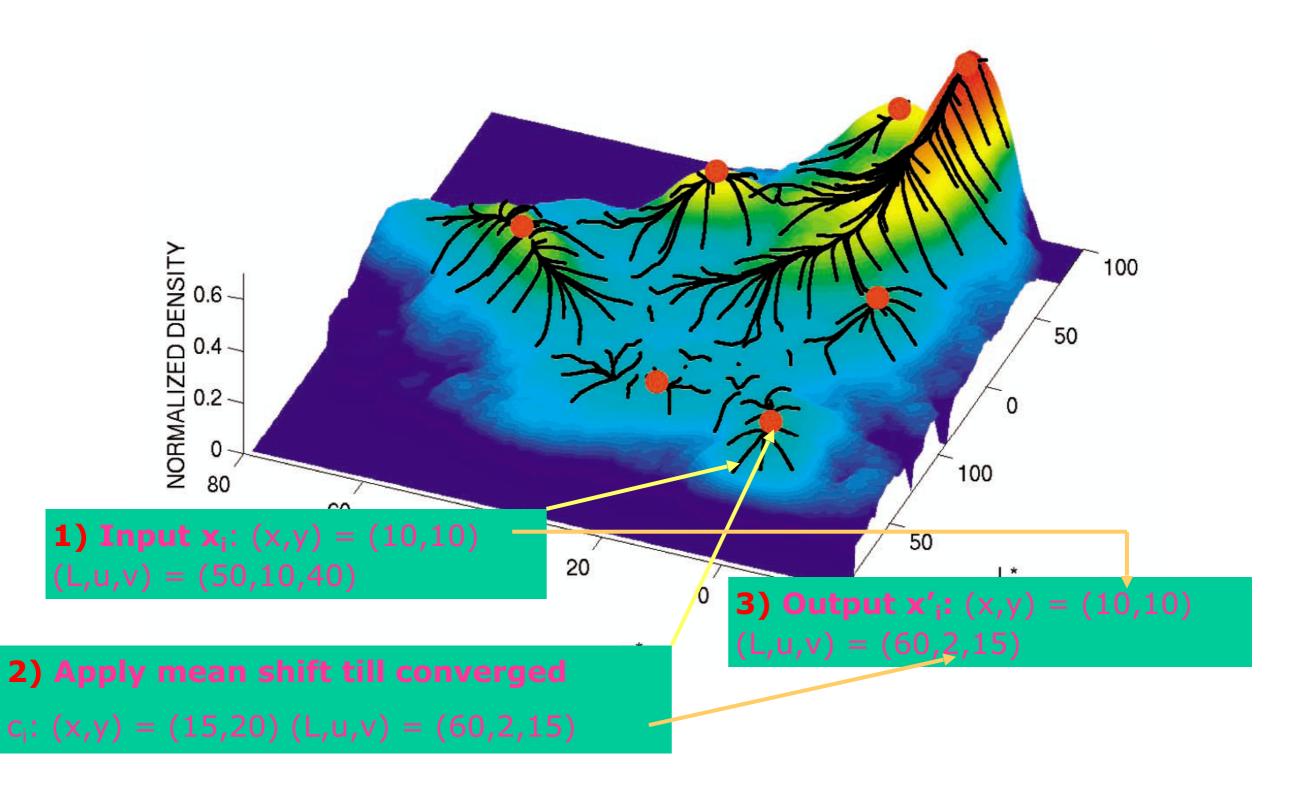
Notes:

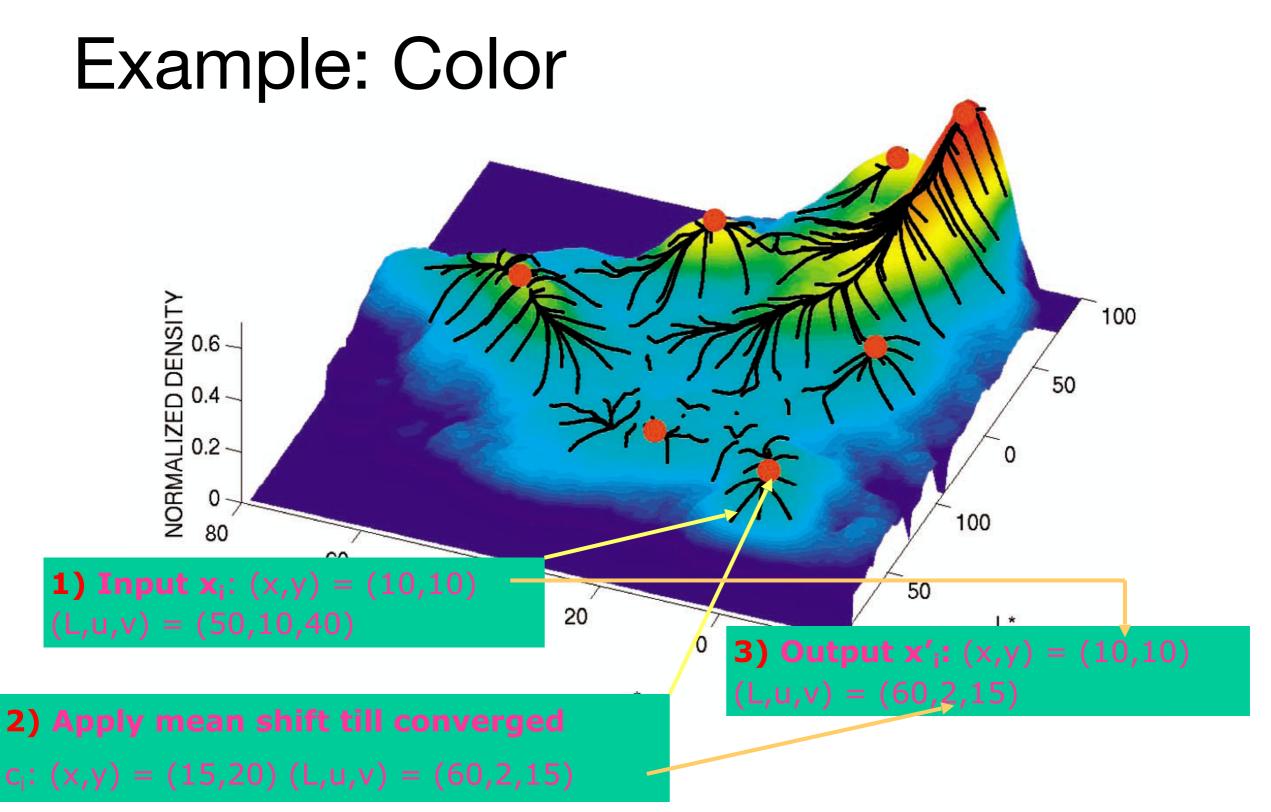
• If we do not apply the last step, we get "smoothing" \rightarrow Replacing each color by the closest mode

• The "color" part of the feature can be replaced by other things like texture (bank of filter outputs) or other values (multispectral). The only change is to increase the dimension *p* of the feature space

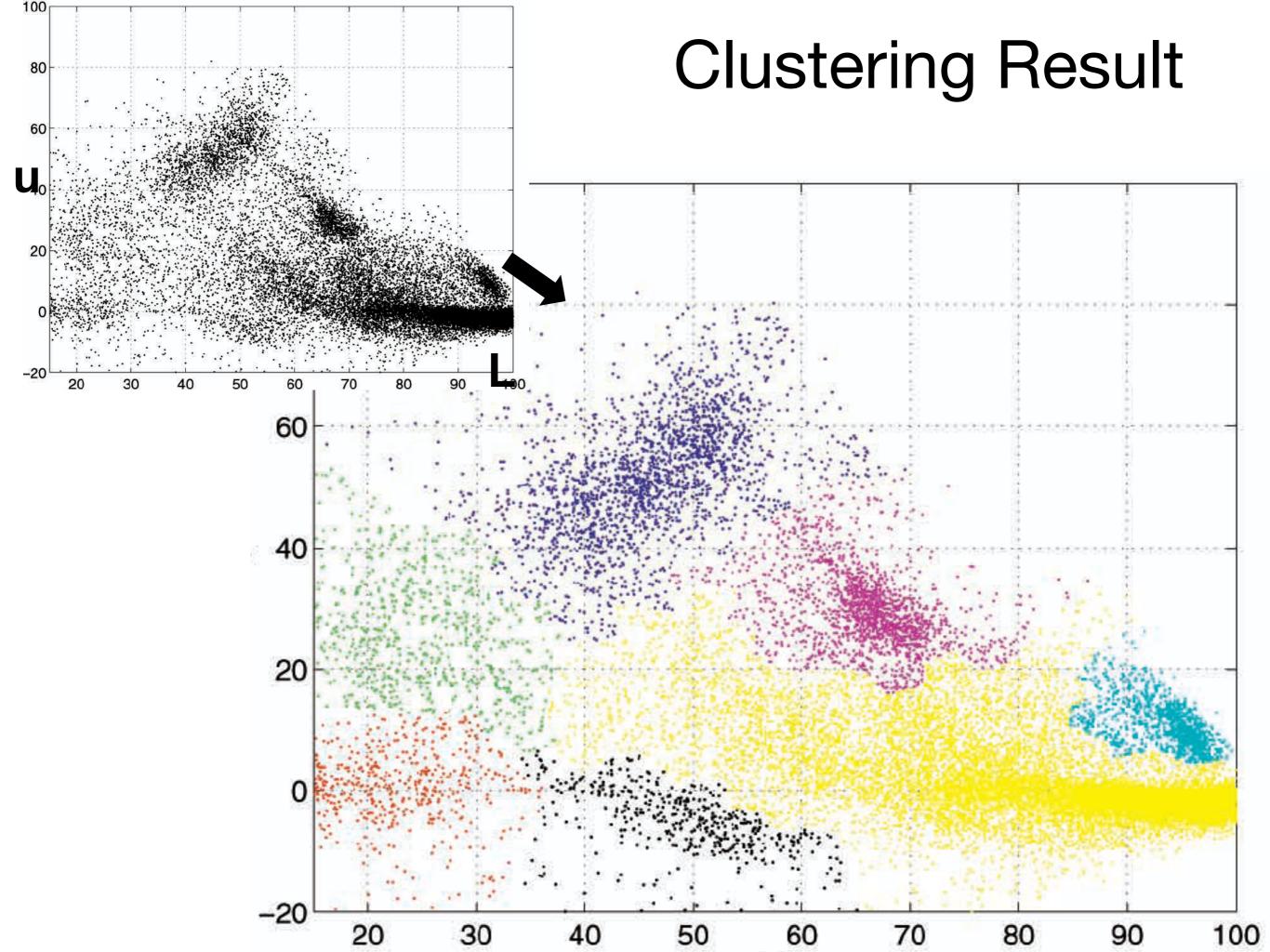
• The fundamental operation to compute the kernels is to find the neighbors within some radius (defined by h). This can be very expensive in high dimension with lots of points \rightarrow Need smart "nearest-neighbor" data structures.

Example: Color

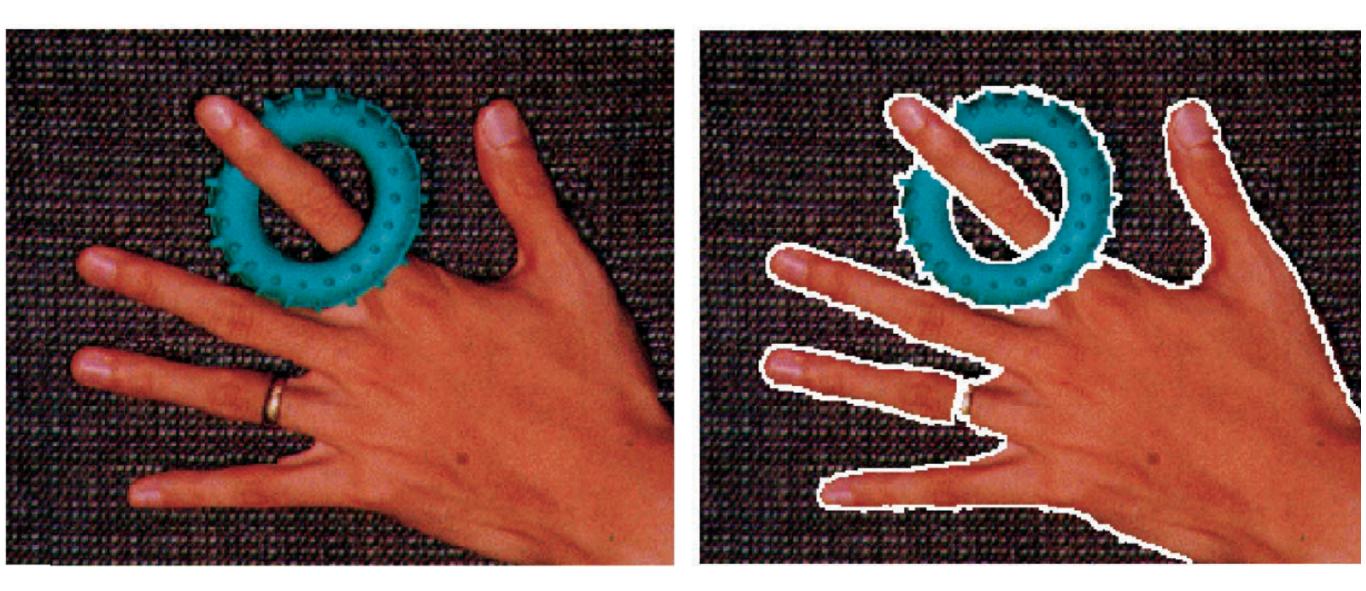




Note: In practice, all points may not converge to the same mode \rightarrow Need an additional (easy) clustering step to group the converged locations to the location



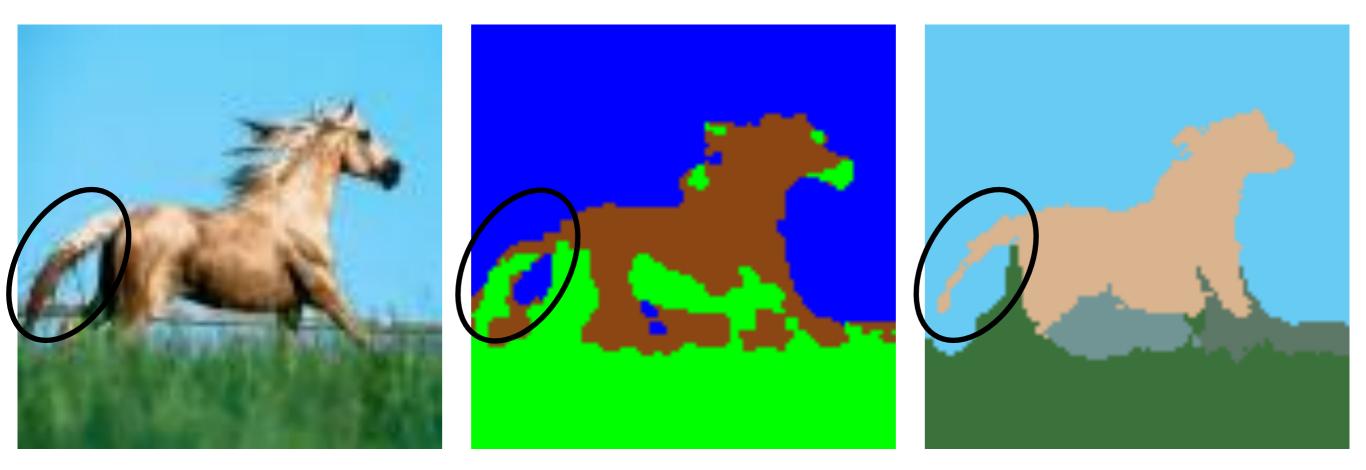
Experimental Results



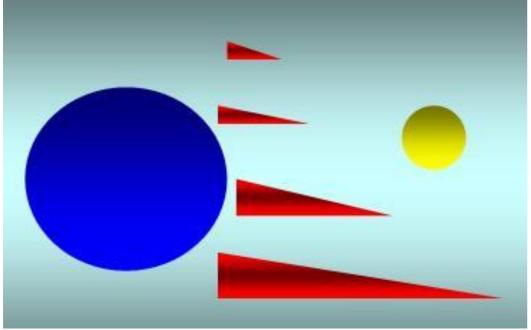
Experimental results

Results - Comparing to EM

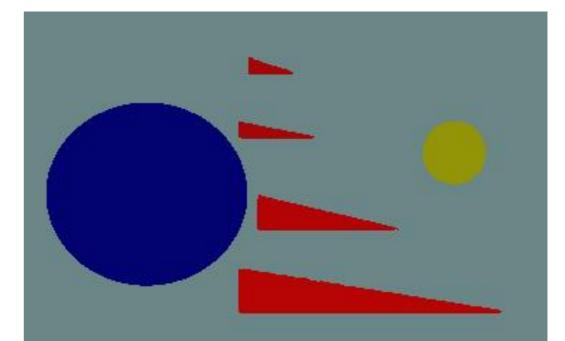
- Original
- EM with 3 clusters and 5 equally weighted features RGB and XY
- Mean shift $(h_{pos}, h_{col}) = (12, 16)$



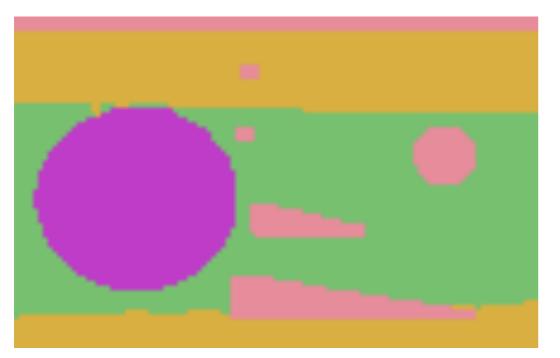
Results - Comparing to EM



Original image



Mean shift $(h_s, h_r, M) = (4, 50, 100)$



EM with 4 clusters

EM with 7 clusters

Results - Comparing to EM

Original image

Mean shift $(h_s, h_r, M) = (10, 10, 10)$

EM with 5 clusters

EM with 13 clusters

Mean shift pros and cons

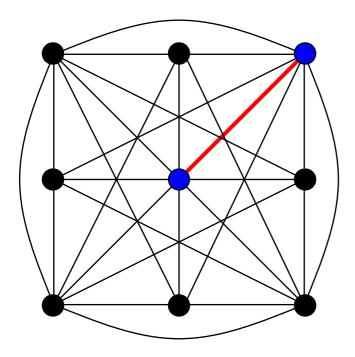
- Pros
 - Does not assume spherical clusters
 - Very few parameters (window size)
 - Finds variable number of modes
 - Robust to outliers
- Cons
 - Output depends on window size
 - Computationally expensive
 - Does not scale well with dimension of feature space

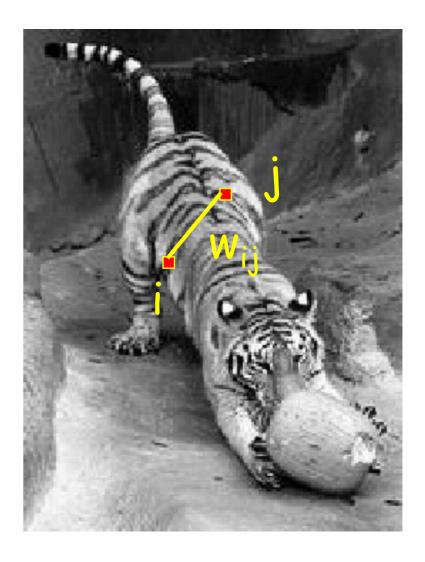
References

D. Comaniciu and P. Meer, "Mean Shift: A Robust Approach Toward Feature Space Analysis". IEEE Trans. PAMI, Vol. 24, No. 5, 2002.

R. Szeliski Computer Vision: Algorithms and Applications, Chapter 5 <u>http://szeliski.org/Book/drafts/SzeliskiBook_20100903_draft.pdf</u>

Graph-based segmentation



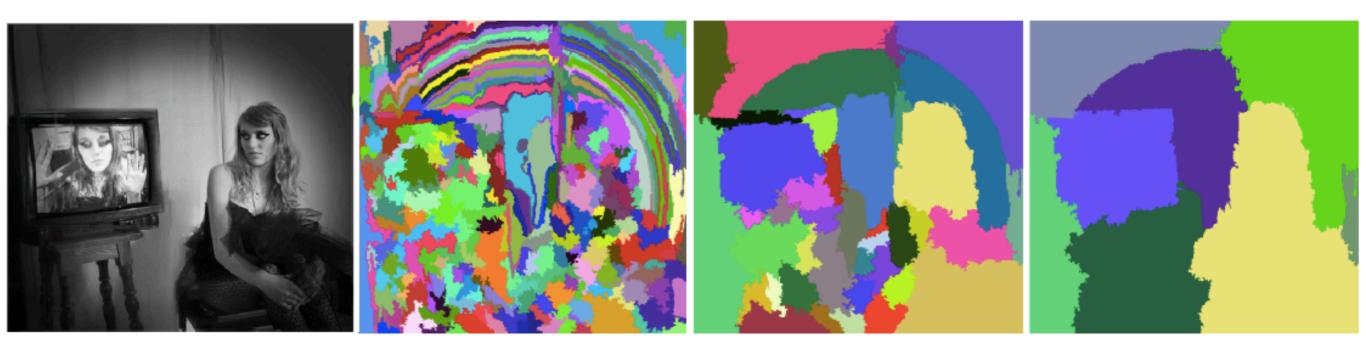


- Node = pixel
- Edge = pair of neighboring pixels
- Edge weight = similarity or dissimilarity of the respective nodes

Felzenszwalb & Huttenlocher algorithm

- Graph definition:
 - Vertices are pixels, edges connect neighboring pixels, weights correspond to *dissimilarity* in (x,y,r,g,b) space
- The algorithm:
 - Start with each vertex in its own component
 - For each edge in increasing order of weight:
 - If the edge is between vertices in two different components A and B, merge if the edge weight is lower than the internal dissimilarity within either of the components
 - Threshold is the minimum of the following values, computed on A and B:
 - (Highest-weight edge in minimum spanning tree of the component) + (k / size of component)

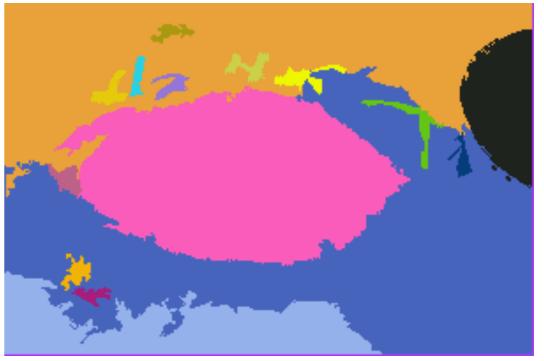
Efficient graph-based segmentation



- Runs in time nearly linear in the number of edges
- Easy to control coarseness of segmentations
- Results can be unstable

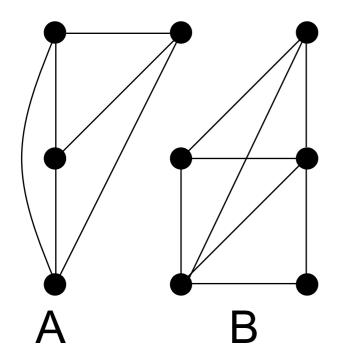
P. Felzenszwalb and D. Huttenlocher, Efficient Graph-Based Image Segmentation, IJCV 2004

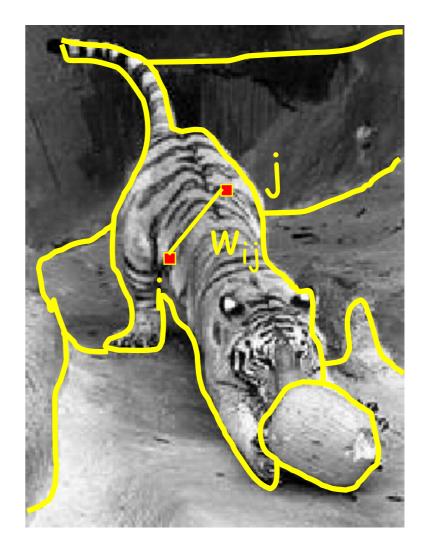
Example results



http://www.cs.brown.edu/~pff/segment/

Segmentation by graph cuts

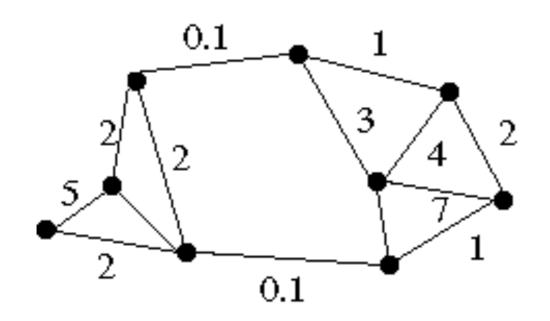




- Break graph into segments
 - Delete links that cross between segments
 - Easiest to break links that have low affinity
 - similar pixels should be in the same segments
 - dissimilar pixels should be in different segments

Segmentation by graph cuts

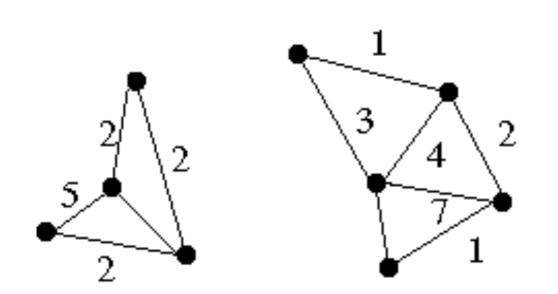
- A graph cut is a set of edges whose removal disconnects the graph
- Cost of a cut: sum of weights of cut edges
- Two-way minimum cuts can be found efficiently



Affinity matrix

Segmentation by graph cuts

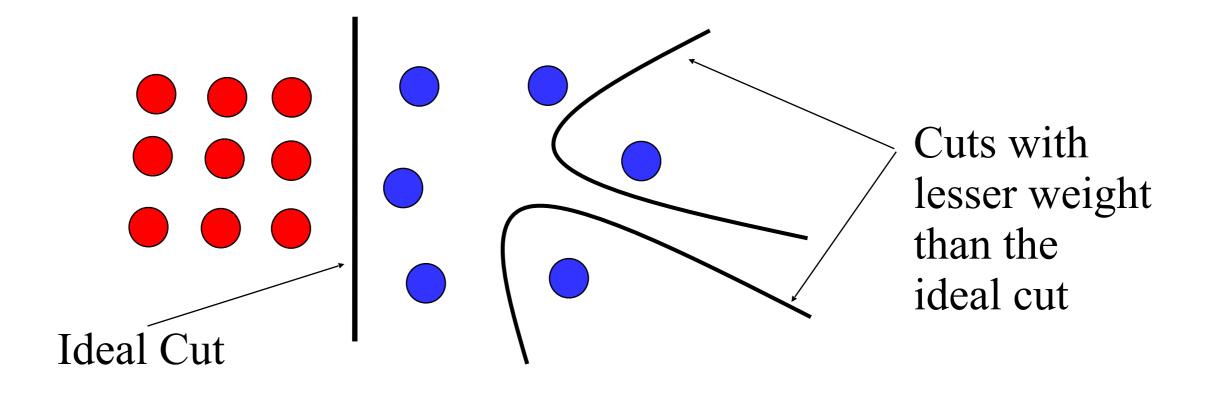
- A graph cut is a set of edges whose removal disconnects the graph
- Cost of a cut: sum of weights of cut edges
- Two-way minimum cuts can be found efficiently



Affinity matrix

Normalized cut

 Minimum cut tends to cut off very small, isolated components



Normalized cut

- To encourage larger segments, normalize the cut by the total weight of edges incident to the segment
- The *normalized cut* cost is:

$$ncut(A,B) = \frac{w(A,B)}{w(A,V)} + \frac{w(A,B)}{w(B,V)}$$

- Intuition: big segments will have a large w(A,V), thus decreasing ncut(A, B)
 w(A, B) = sum of weights of all edges between A and B
- Finding the globally optimal cut is NP-complete, but a relaxed version can be solved using a generalized eigenvalue problem

J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

Normalized cut: Algorithm

- Let W be the affinity matrix of the graph (n x n for n pixels)
- Let **D** be the diagonal matrix with entries $\mathbf{D}(i, i) = \Sigma_j \mathbf{W}(i, j)$
- Solve generalized eigenvalue problem (D W)y = λDy for the eigenvector with the second smallest eigenvalue
 - The *i*th entry of **y** can be viewed as a "soft" indicator of the component membership of the *i*th pixel
 - Use 0 or median value of the entries of y to split the graph into two components
 - To find more than two components:
 - Recursively bipartition the graph
 - Run k-means clustering on values of several eigenvectors

Example result

Original image

Eigenvectors for 2nd and 3rd smallest eigenvalues

More eigenvectors

Normalized cuts: Pro and con

- Pro
 - Generic framework, can be used with many different features and affinity formulations
- Con
 - High storage requirement and time complexity: involves solving a generalized eigenvalue problem of size *n* x *n*, where *n* is the number of pixels

Segmentation as labeling

- Suppose we want to segment an image into foreground and background
 - Binary pixel labeling problem

Segmentation as labeling

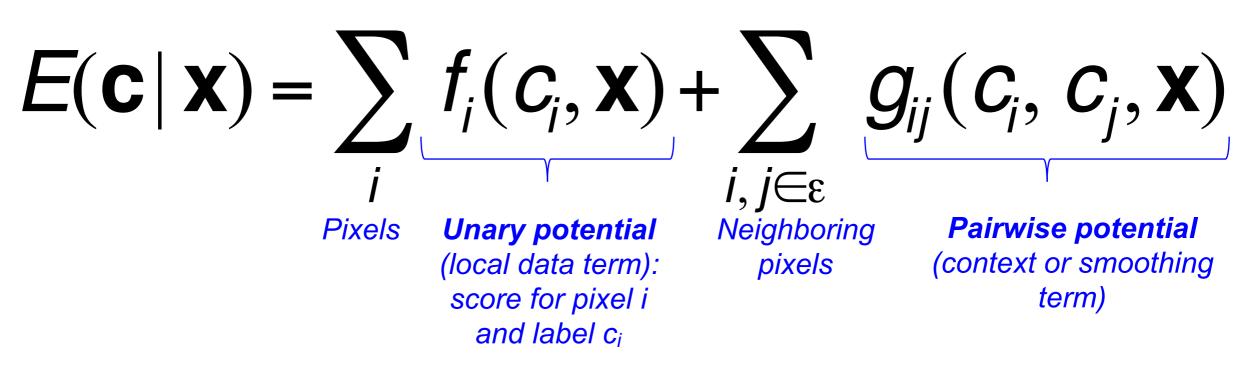
- Suppose we want to segment an image into foreground and background
 - Binary pixel labeling problem
 - Naturally arises in interactive settings

User scribbles

Labeling by energy minimization

 Define a labeling c as an assignment of each pixel to a class (foreground or background)

• Find the labeling that minimizes a global energy function:

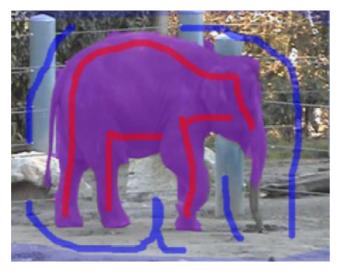


 These are known as Markov Random Field (MRF) or Conditional Random Field (CRF) functions Segmentation by energy minimization

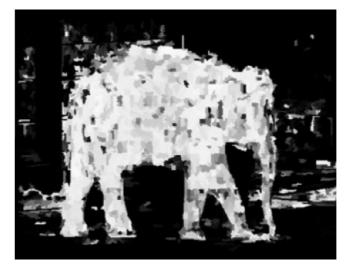
$$E(\mathbf{C} | \mathbf{X}) = \sum_{i} f_i(C_i, \mathbf{X}) + \sum_{i,j \in \varepsilon} g_{ij}(C_i, C_j, \mathbf{X})$$

- Unary potentials: $f_i(\mathbf{C}, \mathbf{X}) = -\log P(\mathbf{C} | \mathbf{X}_i)$
 - Cost is infinity if label does not match the user scribble
 - Otherwise, it is computed based on a color model of user-labeled pixels

User scribbles



 $P(foreground | \mathbf{x}_i)$



Segmentation by energy minimization

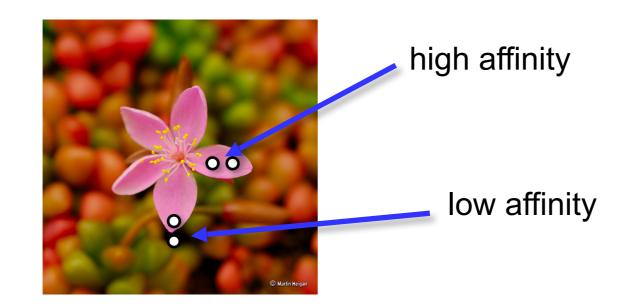
$$E(\mathbf{C} | \mathbf{X}) = \sum_{i} f_i(C_i, \mathbf{X}) + \sum_{i,j \in \varepsilon} g_{ij}(C_i, C_j, \mathbf{X})$$

- Unary potentials: $f_i(\mathbf{C}, \mathbf{X}) = -\log P(\mathbf{C} | \mathbf{X}_i)$
- Pairwise potentials:

$$g_{ij}(C,C',\mathbf{X}) = W_{ij} |C-C'|$$

 Neighboring pixels should have the same label unless they look very different

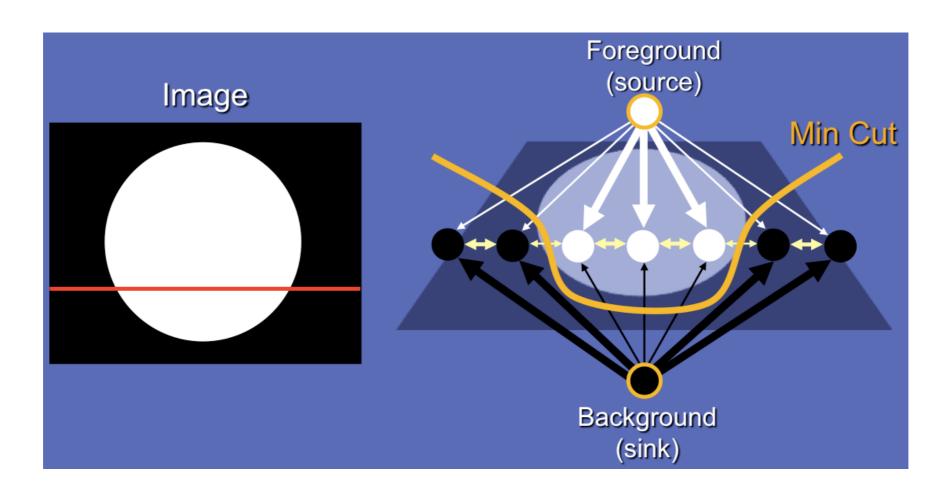
Affinity between pixels i and j



Segmentation by energy minimization

$$E(\mathbf{C} | \mathbf{X}) = \sum_{i} f_i(C_i, \mathbf{X}) + \sum_{i,j \in \varepsilon} g_{ij}(C_i, C_j, \mathbf{X})$$

Can be optimized by finding the minimum st-cut in the following graph:



Y. Boykov and M. Jolly, Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images, ICCV

Summary: Segmentation

- Segmentation as Clustering:
 K-means, EM algorithm, mean-shift
- Segmentation as graph cuts

• What about learning-based approaches (neural nets)?