
Introduction to
Computer Vision

Instructors: Jean Ponce and Matthew Trager

jean.ponce@inria.fr, matthew.trager@cims.nyu.edu

TAs: Jiachen (Jason) Zhu and Sahar Siddiqui

jiachen.zhu@nyu.edu, ss12414@nyu.edu

mailto:jean.ponce@inria.fr
mailto:matthew.trager@cims.nyu.edu
mailto:jiachen.zhu@nyu.edu
mailto:ss12414@nyu.edu

Spectral energy density

Color Matching Experiments

Adjust the knobs on the primaries until the split
field looks uniform.

T = w1P1+w2P2+ … +wkPk Notation only!

T+w1P1+ … +wnPn = wn+1Pn+1+ … +wkPk Subtractive matching

Linearity of Colour Matching (Grassman’s Laws)

Ta = wa1P1+wa2P2+wa3P3 and Tb = wb1P1+wb2P2+wb3P3

λ Ta+µ Tb = (λ wa1+µ wb1)P1+(λ wa2+µ wb2)P2 +(λ wa3+µ wb3)P3

Ta = w1P1+w2P2+w3P3

 and

Tb = w1P1+w2P2+w3P3

Ta = Tb

Note: this does not mean that Ta and Tb have the same spectrum.

Principle of Univariance

• There are (usually) three types of photoreceptors in
the human eye. They do not directly measure spectral
radiance.
• The response of these receptors is 1D (strong or
weak). No information on wavelength.

• Because of linearity, the response of each

photoreceptor can be modeled as

• The sensitivity can be measured
experimentally.

pk = ∫Λ
σk(λ)E(λ)dλ

σk

Spectral sensitivity of the
three types of cones

Cones in the
fovea

Rods and cones in
the periphery

The human
eye..

Color Matching Functions
• Problem: given a set of primaries, what are the weights
matching a given spectral radiance?

λ

1

• Experiments:

Color matching
functions

• To match T use linearity:

{∫Λ
f1(λ)T(λ)dλ} P1 + {∫Λ

f2(λ)T(λ)dλ} P2 + {∫Λ
f3(λ)T(λ)dλ} P3

L (λ) = f1 (λ) P1 + f2 (λ) P2 + f3 (λ) P3

RGB Color Matching Functions

R=645.16nm
G=526.32nm
B=444.44nm

Negative weights

The RGB color cube

CIE XYZ Color Matching Functions

Note: there are no physical
XYZ primaries!

CIE XYZ and xy spaces

All visible
XYZ colors

Boundary: Single
wavelength colors

Outline

• Texture
– Textons
– Bags of words

• Segmentation
– K means and EM algorithm
– Mean-shift algorithm
– Graph cuts

Texture Classification
• Profound observation: Grass and sea pictures don’t

look the same!
• Basic idea: Model the distribution of “texture” over the

image (or over a region) and classify in different
classes based on the texture models learned from
training examples.

Grass Sea

The concept of “texton”

Multiple training
images of the same
Multiple training
images of the same
texture

Filter responses over
a bank of filters

Clustering Texton
Dictionary

Example of filter banks

Isotropic

Gaussian derivatives
at different scales
and orientations

‘S’

‘LM’

‘MR8’

Example of textons (LM)

(Linear combinations of filters corresponding to cluster centers)

Modeling texton distributions
• 1

Training
image

Filter Responses

Texton Map Model =
Histogram of
textons in the

image

Input Image (or
Region of an Input

Image)

Model

Compare with
Stored Models
from Training

Images

Models of Plastic

Models of Grass

Classification

Analogy with Text Analysis
Political observers say that the government of Zorgia does not control
the political situation. The government will not hold elections …

Analogy:
Text fragment !" Image region

Word !" Texton
G

ov
er

nm
en

t

P
ol

iti
ca

l

G
ig

ab
yt

e

O
bs

er
ve

rs

E
le

ct
io

n

M
em

or
y

G
ig

ah
er

tzB
us

Word from
vocabularyFr

eq
ue

nc
y

of
 o

cc
ur

re
nc

e

« Bag of words »

Analogy with Text Analysis
The ZH-20 unit is a 200Gigahertz
processor with 2Gigabyte memory.
Its strength is its bus and high-
speed memory……

P
ol

iti
ca

l

G
ov

er
nm

en
t

G
ig

ab
yt

e

O
bs

er
ve

rs

E
le

ct
io

n

M
em

or
y

G
ig

ah
er

tz

B
us

Word from
vocabularyFr

eq
ue

nc
y

of
 o

cc
ur

re
nc

e G
ov

er
nm

en
t

O
bs

er
ve

rs

Histogram from input
fragment

P
ol

iti
ca

l

G
ov

er
nm

en
t

G
ig

ab
yt

e

O
bs

er
ve

rs

E
le

ct
io

n

M
em

or
y

G
ig

ah
er

tz

B
us

Fr
eq

ue
nc

y
of

 o
cc

ur
re

nc
e

Histogram from training
“computer” fragments

P
ol

iti
ca

l

G
ig

ab
yt

e

E
le

ct
io

n

M
em

or
y

G
ig

ah
er

tz

B
us

Fr
eq

ue
nc

y
of

 o
cc

ur
re

nc
e

Histogram from training
“political” fragments

Compare

Example Classification

Input Region

Textons

Examples
• 1

Summary
• Sources:

– J. Winn, A. Criminisi and T. Minka. Object Categorization by Learned Universal
Visual Dictionary. Proc. IEEE Intern. Conf. Comp. Vision. 2005. (Also Csurka et
al., 2004)

– M. Varma and A. Zisserman. A statistical approach to texture classification from
single images. IJCV, 62(1–2):61–81, April 2005. (Also Lazebnik et al., 2003)

• Questions:
– How many textons/words?
– What filters?
– How to construct clusters?
– How to compare histogram distributions?
– How to exploit the spatial distribution of textons (these examples completely

ignore the relative positions of textons in the image)?

• Will be revisited for object recognition

Segmentation and clustering

Segmentation challenges

Segmentation challenges

http://optical-illusions.wikia.com/wiki/Emergence

http://optical-illusions.wikia.com/wiki/Emergence
http://optical-illusions.wikia.com/wiki/Emergence
http://optical-illusions.wikia.com/wiki/Emergence

Segmentation issues

• “Bottom-up” or “top-down” process?

• Supervised or unsupervised?

• What is the application?

Outline
• Segmentation as clustering

– K-means
– EM algorithm
– Mean shift

• Segmentation as graph cutting
– Normalized cuts
– CRF energy functions, graph cut optimization

The goals of segmentation
• Group together similar-looking pixels for efficiency of

further processing
• “Bottom-up” process
• Unsupervised

X. Ren and J. Malik. Learning a classification model for segmentation. ICCV
2003.

“superpixels”

http://ttic.uchicago.edu/~xren/research/iccv2003/

The goals of segmentation
• Separate image into coherent “objects”

• This is an ill-defined task!

Berkeley segmentation database: 
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

The goals of segmentation
• Separate image into coherent “objects”

• This is an ill-defined task!

Berkeley segmentation database: 
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Interactive
segmentation

Inspiration from psychology
• The Gestalt school: Grouping is key to visual perception

The Muller-Lyer illusion

http://en.wikipedia.org/wiki/Gestalt_psychology

(German: Gestalt - "essence or shape of an entity's complete form")

http://en.wikipedia.org/wiki/Gestalt_psychology
http://en.wikipedia.org/wiki/German_language

The Gestalt school
• Elements in a collection can have properties that

result from relationships
• “The whole is greater than the sum of its parts”

subjective contours occlusion

familiar configuration

http://en.wikipedia.org/wiki/Gestalt_psychology

http://en.wikipedia.org/wiki/Gestalt_psychology

Gestalt factors

Grouping by occlusion

Grouping phenomena in real life

A Berkeley elevator example from D.A. Forsyth

Grouping phenomena in real life

A Berkeley elevator example from D.A. Forsyth

Segmentation as clustering

Source: K. Grauman

Segmentation as clustering
• Simplest methods:

• Agglomerative clustering (Merge):
– grouping stuff that belongs together, or
– iteratively merging the closest clusters

• Divisive clustering (Split):
– split clusters recursively, or
– iteratively split the cluster that yields the most diverse

cluster

• Split and merge

Clustering
How to choose the representative colors?
– This is a clustering problem!

Objective
• Each point should be as close as possible to a cluster center

– Minimize sum squared distance of each point to closest center

R

G

R

G

Solution: break it down into subproblems
Suppose I tell you the cluster centers ci

• A: for each point p, choose closest ci

• Q: how to determine which points to associate with each ci?

Suppose I tell you the points in each cluster

• A: choose ci to be the mean of all points in the cluster
• Q: how to determine the cluster centers?

K-means clustering
• K-means clustering algorithm

1.Randomly initialize the cluster centers,
2.Given cluster centers, determine points in each cluster

– For each point , find the closest . Put into cluster
3.Given points in each cluster, solve for

– Set to be the mean of points in cluster
4.If have changed, repeat Step 2

• Properties
– Will always converge to some solution
– Can be a “local minimum”

• does not always find the global minimum of objective function:

c1, …, cK

p ci p i
ci

ci i
ci

K-means

Segmentation as clustering

Source: K. Grauman

Image Intensity-based clusters Color-based clusters

Segmentation as clustering
• K-means clustering based on intensity or color is

essentially vector quantization of the image attributes
• Clusters don’t have to be spatially coherent

Segmentation as clustering

Source: K. Grauman

(But apples and oranges)

Segmentation as clustering
• Clustering based on (r,g,b,x,y) values enforces more

spatial coherence

K-Means for segmentation
• Pros

• Very simple method
• Converges to a local minimum of the error function

• Cons
• Memory-intensive
• Need to pick K
• Sensitive to initialization
• Sensitive to outliers
• Only finds “spherical”  

clusters

Probabilistic clustering
Basic questions
– what is the probability that a point x is in cluster m?
– what is the shape of each cluster?

K-means doesn’t answer these questions

Basic idea
– instead of treating the data as a bunch of points, assume that they

are all generated by sampling a continuous function
– This function is called a generative model

– defined by a vector of parameters θ

Mixture of Gaussians

One generative model is a mixture of Gaussians (MOG)
– K Gaussian blobs with means µb covariance matrices Vb, dimension d

• blob b defined by:

– blob b is selected with probability
– the likelihood of observing x is a weighted mixture of Gaussians

where θ = [α1, …, αK, μ1, …, μK, V1, …, Vk]

P (x |μb, Vb) =
1

(2π)d Vb

e− 1
2 (x − μb)TV−1

b (x − μb)

P(x |θ) =
K

∑
b=1

αbP(x |μb, Vb)

Expectation maximization (EM)

Goal
– find blob parameters θ that maximize the likelihood function:

Approach:
1. E step: given current guess of blobs, compute ownership of each point
2. M step: given ownership probabilities, update blobs to maximize likelihood

function
3. repeat until convergence

EM details
E-step
– compute probability that point x is in blob b, given current guess of θ

P(x)
P(b|x)

P(x|b)

P(b)

EM details
E-step
– compute probability that point x is in blob b, given current guess of θ

M-step (maximize the log likelihood)
– compute probability that blob b is selected

– mean of blob b

– covariance of blob b

N data points

Applications of EM
Turns out this is useful for all sorts of problems
– any clustering problem
– any model estimation problem
– missing data problems
– finding outliers
– segmentation problems

• segmentation based on color
• segmentation based on motion
• foreground/background separation

– ...

(probabilistic problem
 formulation)

Problems with EM
1. Local minima

2. Need to know number of segments

3. Need to assume generative model

Histogram-based segmentation
Goal
– Break the image into K regions (segments)
– Solve this by reducing the number of colors to K and mapping each

pixel to the closest color

Histogram-based segmentation
Goal
– Break the image into K regions (segments)
– Solve this by reducing the number of colors to K and mapping each

pixel to the closest color

Here’s what it looks like if we use two colors

Finding Modes in a Histogram

How Many Modes Are There? What are they? Which
points belong with which modes?
– Easy to see, hard to compute

A 1-D Example

Feature
value

A 1-D Example

• “Obviously”, we would like to generate two groups,
corresponding to the two parts of the feature space in
which we have a high density of points

• How can we capture this notion of “high density” "
kernel density estimation

Feature
value

A 1-D Example

Let us define a kernel function: K (X), with the properties:
• K decays to zero far from 0

• K is maximum at 0
• K is symmetric

Feature
Value X

K(X)

0

A 1-D Example

• We can define the kernel at each data point and
average the result into a single function:

Feature
value

() ()∑ −=
i

iXXK
N

Xf 1

A 1-D Example

• (Should be normalized to unit integral)
• The maxima of f (the modes of the pdf) correspond to

the clusters in the data

Feature
value

() ()∑ −=
i

iXXK
N

Xf 1

A 1-D Example

• If we move each point in the direction of the gradient,
we will converge to the closest mode

• How can we do this efficiently?

Feature
value

() ()∑ −=
i

iXXK
N

Xf 1

Basic algorithm: gradient ascent
• For

• Repeat

until does not change

i = 1,…, N

X

X ← Xi

X ← Xi + λ∇f(X) = Xi +
λ
N ∑

i

∇K (X − Xi)

Example kernels

1
()

 0 otherwiseU
c

K
⎧ ≤

= ⎨
⎩

x
x

21
() exp

2NK c ⎛ ⎞= ⋅ −⎜ ⎟
⎝ ⎠

x x

()21 1
()

 0 otherwise
E

c
K

⎧ − ≤⎪
= ⎨
⎪⎩

x x
x

Uniform:

Gaussian:

Epanechnikov:

Bandwith
• Kernel is defined as:

• h is the bandwith of the kernel
• k is: 

– For Gaussian:  

– For Epanechnikov:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

2

)(
h
XckXK

() 2/tetk −=

() ()
⎩
⎨
⎧ <−

=
0

1t if1 t
tk

Bandwith
• Kernel is defined as:

• h is the bandwith of the kernel
• k is: 

– For Gaussian:  

– For Epanechnikov:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

2

)(
h
XckXK

() 2/tetk −=

() ()
⎩
⎨
⎧ <−

=
0

1t if1 t
tk

Bandwidth h controls the radius of influence of each
data point.
• Too small: Overfits the data points
• Too large: Smoothes out the details of the data

Feature
value

h too small: The pdf overfits
the noise in the data " Too
many modes

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=∑

2

)(
h
XXckXf i

i

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

2

)(
h
XckXK

Feature
value

h too large: The details of the
initial data are smoothed out "
Too few modes

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
= ∑

21)(
h
XXck

N
Xf i

i

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

2

)(
h
XckXK

Computing the Gradient
• Now we have a representation of the pdf from which,

in principle, we can find the modes by following the
gradient.

• How can we do this efficiently?
• Notations:

 g(t) = -k’(t)
• Gradient of each individual entry in the sum defining f:

()
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
∇=−∇ 2

2

22

2
2)(

h
XX

gXX
h
c

h
XX

ckXXK i
i

i
i

Computing the Gradient
Gradient of the entire pdf:

()∑∑ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−=−∇=∇

i

i
i

i
i h

XX
gXX

Nh
cXXK

N
Xf 2

2

2

2)(1)(

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
=∇

∑

∑
∑ X

h
XX

g

h
XX

gX

h
XX

g
Nh
cXf

i

i

i

i
i

i

i

2

2

2

2

2

2

2

2)(

⇓

• Key result: The mean shift vector points in the same
direction as the gradient

• Solution: Iteratively move in the direction of the mean shift
vector

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
=∇

∑

∑
∑ X

h
XX

g

h
XX

gX

h
XX

g
Nh
cXf

i

i

i

i
i

i

i

2

2

2

2

2

2

2

2)(

Mean shift vector, M(X) = Difference between
X and the mean of the data points weighted by
g(.) (points further from X count less)

The Mean-Shift Algorithm
• Initialize: Set X to the value of the point to

classify
• Repeat (fixed point iterations for zero gradient):
o Move X by the corresponding mean shift vector:

 

• Until X converges
Note: Under mild conditions, convergence is guaranteed.

∑

∑

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −

=+←

i

i

i

i
i

h
XX

g

h
XX

gX

XMXX

2

2

2

2

)(

∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

N

i

i

h
XXk

N
cXf

1

2

)(
2-D Example

Estimated PDF: ∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

N

i

i

h
XXk

N
cXf

1

2

)(

The trajectory of locations for finding modes

∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

N

i

i

h
XXk

N
cXf

1

2

)(

The Mean Shift Process

window

window

The Mean Shift Process

window

The Mean Shift Process

window

The Mean Shift Process

window

The Mean Shift Process

window

The Mean Shift Process

The Mean Shift Process

Mean shift clustering
• Cluster: all data points in the attraction basin of a

mode
• Attraction basin: the region for which all trajectories

lead to the same mode

Slide by Y. Ukrainitz & B. Sarel

Example: Color Segmentation
Feature space: (L,u,v,x,y) " Intensity + (u,v) color
channels + Position in image (x,y)
Apply meanshift in the 5-dimensional space
For each pixel (xi,yi) of intensity Li and color (ui,vi), find
the corresponding mode ck

All of the pixel (xi,yi) corresponding to the same mode
ck are grouped into a single region

Example: Color Segmentation

Input Image
Luv Space ()

L

u

v

L

u

110,400 data points.

()
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
= 2

2

2

2

col

col

pos

pos
hh h

X
k

h

X
kcXK

colpos

Kernel on position (x,y)

Kernel on color (L,u,v)

• Good news: We don’t need to know the number of
regions (modes, clusters).

• Bad news: We need to choose the bandwidths hpos
and hcol

Density 
gradient 

 estimation

 Fusing the regions associated 
with nearby local maxima

Mean Shift for Segmentation

Converged? 
(c’=c)

 Updating the point 
c’ = c + m.s.

Output

{xi’=(xi,yi,Lc,uc,vc)}

Calculating the mean shift

Input

{xi=(xi,yi,Li,ui,vi)}

Kernel  
density 
function

segmentation

yes
no

smoothing

spatial

color

color 
(! c)

spatial  
(! xi)

The Mean Shift Process
Notes:
• If we do not apply the last step, we get “smoothing” "
Replacing each color by the closest mode

• The “color” part of the feature can be replaced by
other things like texture (bank of filter outputs) or other
values (multispectral). The only change is to increase
the dimension p of the feature space

• The fundamental operation to compute the kernels is
to find the neighbors within some radius (defined by h).
This can be very expensive in high dimension with lots
of points " Need smart “nearest-neighbor” data
structures.

Example: Color

1) Input xi: (x,y) = (10,10)
(L,u,v) = (50,10,40)

2) Apply mean shift till converged

ci: (x,y) = (15,20) (L,u,v) = (60,2,15)

3) Output x’i: (x,y) = (10,10)
(L,u,v) = (60,2,15)

1) Input xi: (x,y) = (10,10)
(L,u,v) = (50,10,40)

2) Apply mean shift till converged

ci: (x,y) = (15,20) (L,u,v) = (60,2,15)

3) Output x’i: (x,y) = (10,10)
(L,u,v) = (60,2,15)

Note: In practice, all points may not converge to the same mode
" Need an additional (easy) clustering step to group the
converged locations to the location

Example: Color

L

u

Clustering Result

Experimental Results

Experimental results

Results - Comparing to EM
– Original
– EM with 3 clusters and 5 equally weighted features

RGB and XY

– Mean shift (hpos,hcol) = (12,16)

 Original image Mean shift (hs,hr,M) = (4,50,100)

 EM with 4 clusters EM with 7 clusters

Results - Comparing to EM

 Original image Mean shift (hs,hr,M) = (10,10,10)

 EM with 5 clusters EM with 13 clusters

Results - Comparing to EM

Mean shift pros and cons
• Pros

• Does not assume spherical clusters
• Very few parameters (window size)
• Finds variable number of modes
• Robust to outliers

• Cons
• Output depends on window size
• Computationally expensive
• Does not scale well with dimension of feature space

References

D. Comaniciu and P. Meer, “Mean Shift: A Robust Approach Toward
Feature Space Analysis”. IEEE Trans. PAMI, Vol. 24, No. 5, 2002. 

R. Szeliski Computer Vision: Algorithms and Applications, Chapter 5
http://szeliski.org/Book/drafts/SzeliskiBook_20100903_draft.pdf

http://szeliski.org/Book/drafts/SzeliskiBook_20100903_draft.pdf

Graph-based segmentation

• Node = pixel
• Edge = pair of neighboring pixels
• Edge weight = similarity or dissimilarity of the

respective nodes

wij
i

j

Source: S. Seitz

Felzenszwalb & Huttenlocher algorithm
• Graph definition:

• Vertices are pixels, edges connect neighboring pixels,
weights correspond to dissimilarity in (x,y,r,g,b) space

• The algorithm:
• Start with each vertex in its own component
• For each edge in increasing order of weight:

• If the edge is between vertices in two different components A
and B, merge if the edge weight is lower than the internal
dissimilarity within either of the components

• Threshold is the minimum of the following values, computed on
A and B:
– (Highest-weight edge in minimum spanning tree of the

component) + (k / size of component)

Efficient graph-based segmentation

• Runs in time nearly linear in the number of edges
• Easy to control coarseness of segmentations
• Results can be unstable

P. Felzenszwalb and D. Huttenlocher, Efficient Graph-Based Image Segmentation,
IJCV 2004

http://www.cs.brown.edu/~pff/segment/
http://www.cs.brown.edu/~pff/segment/
http://www.cs.brown.edu/~pff/segment/

Example results

http://www.cs.brown.edu/~pff/segment/

http://www.cs.brown.edu/~pff/segment/

Segmentation by graph cuts

• Break graph into segments
• Delete links that cross between segments
• Easiest to break links that have low affinity

– similar pixels should be in the same segments
– dissimilar pixels should be in different segments

A B

Source: S. Seitz

wij
i

j

Segmentation by graph cuts
• A graph cut is a set of edges whose removal

disconnects the graph
• Cost of a cut: sum of weights of cut edges
• Two-way minimum cuts can be found efficiently

Affinity matrix

Segmentation by graph cuts
• A graph cut is a set of edges whose removal

disconnects the graph
• Cost of a cut: sum of weights of cut edges
• Two-way minimum cuts can be found efficiently

Affinity matrix

Normalized cut
• Minimum cut tends to cut off very small, isolated

components

Ideal Cut

Cuts with
lesser weight
than the
ideal cut

Source: S. Lazebnik

Normalized cut
• To encourage larger segments, normalize the cut by the total weight of

edges incident to the segment
• The normalized cut cost is:

• Intuition: big segments will have a large w(A,V), thus decreasing ncut(A, B)

• Finding the globally optimal cut is NP-complete,  
but a relaxed version can be solved using a generalized eigenvalue
problem  
 
 
 

 w(A, B) = sum of weights of all edges between A and B

),(
),(

),(
),(),(

VBw
BAw

VAw
BAwBAncut +=

J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf

Normalized cut: Algorithm
• Let W be the affinity matrix of the graph (n x n for n

pixels)
• Let D be the diagonal matrix with entries D(i, i) = Σj W(i, j)
• Solve generalized eigenvalue problem (D − W)y = λDy  

for the eigenvector with the second smallest eigenvalue
• The ith entry of y can be viewed as a “soft” indicator  

of the component membership of the ith pixel
• Use 0 or median value of the entries of y to split  

the graph into two components

• To find more than two components:
• Recursively bipartition the graph
• Run k-means clustering on values of  

 several eigenvectors

Example result

Original image Eigenvectors for 2nd and 3rd smallest eigenvalues

More eigenvectors

Normalized cuts: Pro and con
• Pro

• Generic framework, can be used with many different
features and affinity formulations

• Con
• High storage requirement and time complexity:

involves solving a generalized eigenvalue problem of
size n x n, where n is the number of pixels

Segmentation as labeling
• Suppose we want to segment an image into

foreground and background
• Binary pixel labeling problem

Segmentation as labeling
• Suppose we want to segment an image into

foreground and background
• Binary pixel labeling problem
• Naturally arises in interactive settings

User scribbles

Labeling by energy minimization
• Define a labeling c as an assignment  

of each pixel to a class (foreground  
or background)  

• Find the labeling that minimizes a global energy function:

• These are known as Markov Random Field (MRF) or Conditional
Random Field (CRF) functions

E(c | x) = fi (ci,x)+
i
∑ gij (ci,

i, j∈ε
∑ cj ,x)

Unary potential
(local data term):  
score for pixel i

and label ci

Pixels Pairwise potential
(context or smoothing

term)

Neighboring
pixels

Source: S. Lazebnik

• Unary potentials: 
• Cost is infinity if label does not match the user scribble
• Otherwise, it is computed based on a color model of user-labeled pixels

Segmentation by energy minimization

fi (c,x) = − logP(c | xi)

E(c | x) = fi (ci,x)+
i
∑ gij (ci,

i, j∈ε
∑ cj ,x)

User scribbles P(foreground | xi)

Source: S. Lazebnik

• Unary potentials:

• Pairwise potentials: 

• Neighboring pixels should have the same  
label unless they look very different

Segmentation by energy minimization

fi (c,x) = − logP(c | xi)

E(c | x) = fi (ci,x)+
i
∑ gij (ci,

i, j∈ε
∑ cj ,x)

gij (c, ʹc ,x) =wij c− ʹc
Affinity between

pixels i and j

high affinity

low affinity

Source: S. Lazebnik

Segmentation by energy minimization
E(c | x) = fi (ci,x)+

i
∑ gij (ci,

i, j∈ε
∑ cj ,x)

Y. Boykov and M. Jolly, Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images, ICCV
2001

• Can be optimized by finding the minimum st-cut in the
following graph:

Source: S. Lazebnik

ftp://ftp.umiacs.umd.edu/.snapshot/hourly.3/pub/chenxi/Project%20FTP/OLD/Submodular/Graphcut_boykov-iccv-01.pdf
ftp://ftp.umiacs.umd.edu/.snapshot/hourly.3/pub/chenxi/Project%20FTP/OLD/Submodular/Graphcut_boykov-iccv-01.pdf
ftp://ftp.umiacs.umd.edu/.snapshot/hourly.3/pub/chenxi/Project%20FTP/OLD/Submodular/Graphcut_boykov-iccv-01.pdf
ftp://ftp.umiacs.umd.edu/.snapshot/hourly.3/pub/chenxi/Project%20FTP/OLD/Submodular/Graphcut_boykov-iccv-01.pdf
ftp://ftp.umiacs.umd.edu/.snapshot/hourly.3/pub/chenxi/Project%20FTP/OLD/Submodular/Graphcut_boykov-iccv-01.pdf

Summary: Segmentation
• Segmentation as Clustering:

– K-means, EM algorithm, mean-shift
• Segmentation as graph cuts

• What about learning-based approaches (neural nets)?

