
Introduction to
Computer Vision

Instructors: Jean Ponce and Matthew Trager

jean.ponce@inria.fr, matthew.trager@cims.nyu.edu

TAs: Jiachen (Jason) Zhu and Sahar Siddiqui

jiachen.zhu@nyu.edu, ss12414@nyu.edu

mailto:jean.ponce@inria.fr
mailto:matthew.trager@cims.nyu.edu
mailto:jiachen.zhu@nyu.edu
mailto:ss12414@nyu.edu

Outline

• Recap of filtering, Fourier transform, Canny edge
detector.

• Keypoints and features: Harris corner detector and
SIFT.

• Robust estimation: RANSAC and Hough transform.

Digital images

An image is function ! defined on a rectangular array of pixels: f : Ω → V

Ω = {(x, y) | 1 ≤ x ≤ M, 1 ≤ y ≤ N} ⊂ ℤ2 .

For scalar images, the range is usually a discrete set, !
Thus, ! can also be viewed as a grid of integers.

V = {0,…,2a − 1} .
f

Image filtering

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f
111

111

111

],[g ⋅⋅

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=∑

Gaussian Kernel

• Standard deviation σ: determines extent of smoothing

Source: K. Grauman

σ = 2 with 30 x 30
kernel

σ = 5 with 30 x 30
kernel

Discrete 2D Fourier transform
The 2D discrete Fourier transform is defined as

• Transforms an image into an grid of complex
numbers.

• Here are “frequencies” (recall).
• The inverse transform decomposes original image as a weighted

sum of sines and cosines:

M × N M × N

u, v eiα = cos α + i sin α

H(u, v) =
1

MN

M−1

∑
x=0

N−1

∑
y=0

f(x, y)e−i2π(ux
M + vy

N)

f(x, y) =
1

MN

M−1

∑
u=0

N−1

∑
v=0

H(u, v)ei2π(ux
M + vy

N)

Image data and frequency domain
• Usually, log-magnitude at every pixel is plotted
• Low frequencies = long wavelengths, high

frequencies = short wavelengths (local
discontinuities).

• Gaussian filter acts as “low-pass filter”. Useful to
avoid aliasing.

Edge detection
• Goal: Identify sudden changes (discontinuities) in

an image
• Intuitively, edges carry most of the semantic and

shape information from the image

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Sources: D. Lowe and S. Seitz

Edges are
caused by a
variety of
factors

Edge detection
• An edge is a place of rapid change in the image

intensity function

image
intensity function 

(along horizontal scanline) first derivative

edges correspond to 
extrema of derivative

Source: S.Lazebnik

Effects of noise
Consider a single row or column of the image

Where is the edge?
Source: S. Seitz

Solution: smooth first

• To find edges, look for peaks in)(gf
dx
d

∗

f

g

f * g

)(gf
dx
d

∗

Source: S. Seitz

Derivative theorem of convolution
• Differentiation is convolution, and convolution is

associative: 

• This saves us one operation:

g
dx
d

fgf
dx
d

∗=∗)(

g
dx
d

f ∗

f

g
dx
d

Source: S. Seitz

Image Derivatives
• In the discrete case we could take the difference

between the left and right pixels:

• Convolution of the image by

• Problem: Increases noise
 
 

),1(),1(jiIjiI
x
I

−−+≈
∂

∂

−+ ++−−+=−−+ nnjiIjiIjiIjiI),1(ˆ),1(ˆ),1(),1(

Difference between
Actual image values

True difference
(derivative)

Sum of the noises

-1 0 1 =∂ x

Derivative of Gaussian filter

* [1 0 -1] =

Source: D. Hoiem

fggfG xx ** ↑=∗ σσσ
Separable filter:

gσ ∂x Gx
σ* =

Separability of derivative of Gaussian

G∇

G

G xgσ

σg
Gx

σ

Gx
σ(x, y) = gx

σ(x) ⋅ gσ(y)

Directional derivatives

x-direction y-direction

Source: S.Lazebnik

Image gradient
• An image is a function . The gradient at a point is a

vector

• The gradient points in the direction o most rapid increase in
intensity.

• Given , the direction and magnitude of the gradient are

f(x, y) (x, y)
∇f = [∂f

∂x
,

∂f
∂y] ∈ ℝ2 .

∂f
∂x

,
∂f
∂y

Source: Steve Seitz

θ = tan−1 (∂f
∂y / ∂f

∂x)
∥∇f∥ = (∂f

∂x)
2

+ (∂f
∂y)

2

Compute gradients

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude

Source: D. Hoiem

Building an edge detector

Thresholded norm of the gradient

How to turn
these thick
regions of the
gradient into
curves?

Source: S.Lazebnik

Non-maximum suppression
• For each location q above threshold, check that the

gradient magnitude is higher than at neighbors p and r
along the direction of the gradient

• May need to interpolate to get the magnitudes at p and r

Source: S.Lazebnik

Non-max suppression

1.5

2

2

4.1

Gradient magnitude at center pixel is lower
than the gradient magnitude of a neighbor in
the direction of the gradient

! Discard center pixel (set magnitude to 0)

Gradient magnitude at center pixel is greater
than gradient magnitude of all the neighbors
in the direction of the gradient

! Keep center pixel unchanged2.5

1.0
∇f

∇f

Before non-max suppression

After non-max suppression

Hysteresis thresholding
• Check that maximum value of gradient value is

sufficiently large
• Use hysteresis: use a high threshold to start

edge curves and a low threshold to continue
them.

Source: S. Seitz

Weak pixels but connected

Very strong edge response.
Let’s start here

Weaker response but it is
connected to a confirmed
edge point. Let’s keep it.

Continue…Very strong edge response.

Let’s start here

Weaker response but it is

connected to a confirmed

edge point. Let’s keep it.

Continue…

Weak pixels but isolated

Hysteresis example

Final Canny Edges

Effect of σ

Canny with Canny with original

The choice of σ depends on desired behavior

• large σ detects large scale edges

• small σ detects fine features

Source: S. Seitz

Canny edge detector
1. Filter image with x, y derivatives of Gaussian.
2. Find magnitude and orientation of gradient.
3. Non-maximum suppression:

– Thin multi-pixel wide “ridges” down to single pixel
width.

4. Thresholding and linking (hysteresis):
– Define two thresholds: low and high.
– Use the high threshold to start edge curves and the

low threshold to continue them.

Interest points

Suppose you have to click
on some point, go away
and come back after I
deform the image, and click
on the same points again.

Which points would you
choose?

original

deformed

Source: D. Hoiem

Interest points and features

• A keypoint / interest point is a characteristic
part of the image that we can retrieve robustly
(edges, points, regions).

• A descriptor is a way of summarizing properties
of a key point.

• Keypoint + descriptor = feature (sometimes
used instead of keypoint).

Applications
Keypoints are used for:
– Image alignment
– 3D reconstruction
– Motion tracking
– Robot navigation
– Indexing and database retrieval
– Object recognition

Source: S. Lazebnik

Source: S. Lazebnik

We have two images – how do we combine them?

Example: panorama stitching

Example: panorama stitching

We have two images – how do we combine them?

Step 1: extract keypoints
Step 2: match keypoint features

Source: S. Lazebnik

We have two images – how do we combine them?

Example: panorama stitching

Step 1: extract keypoints
Step 2: match keypoint features
Step 3: align images

Source: S. Lazebnik

Characteristics of good keypoints
• Compactness and efficiency

• Many fewer keypoints than image pixels
• Saliency

• Each keypoint is distinctive
• Locality

• A keypoint occupies a relatively small area of the image; robust to clutter and
occlusion

• Repeatability
• The same keypoint can be found in several images despite geometric and

photometric transformations

Source: S. Lazebnik

K. Grauman, B. Leibe

Overview of keypoint matching

Af Bf

B
B

BA

A A

Tffd BA <),(

1. Detection: identify the
interest points

2. Description: Extract
vector feature
descriptor surrounding
each interest point.

3. Matching: determine
correspondence
between descriptors in
two views.

Corner detection: basic idea
• We should easily recognize the point by looking

through a small window
• Shifting a window in any direction should give a

large change in intensity

“edge”: 
no change along
the edge direction

“corner”: 
significant change
in all directions

“flat” region:  
no change in
all directions

Source: S. Lazebnik

Corner detection
Change in appearance of window for shift :W (u, v)

I(x, y)
E(u, v)

E(3,2)

Source: S. Lazebnik

E(u, v) = ∑
(x,y)∈W

I(x + u, y + v) − I(x, y))2

Corner detection
Change in appearance of window for shift :W (u, v)

I(x, y)
E(u, v)

E(3,2)

Source: S. Lazebnik

E(u, v) = ∑
(x,y)∈W

(I(x + u, y + v) − I(x, y))2

I(x, y)
E(u, v)

E(0,0)

Taylor approximation
• We approximate as follows:E(u, v)

I(x + u, x + v) ≈ I(x, y) + Ix(x, y)u + Iy(x, y)v

E(u, v) ≈ ∑
(x,y)∈W

(Ix(x, y)u + Iy(x, y)v)2 = [u v] ⋅ M ⋅ [u
v],

M = ∑
(x,y)∈W [

I2
x IxIy

IxIy I2
y] =

∑(x,y)∈W I2
x ∑(x,y)∈W IxIy

∑(x,y)∈W IxIy ∑(x,y)∈W I2
y

.where

“second moment matrix”.

• The surface E(u,v) is locally approximated by a
quadratic form. Let’s try to understand its shape.

• Specifically, in which directions does it have the
fastest/slowest change?

Interpreting the second moment matrix

E(u, v)

Source: S. Lazebnik

The sets defined by is an
ellipse:

[u v] ⋅ M ⋅ [u
v] = const

Interpreting the second moment matrix

Source: S. Lazebnik

Consider the axis-aligned case (gradients are
either horizontal or vertical)

Interpreting the second moment matrix

M =

I x2
x,y
∑ I xI y

x,y
∑

I xI y
x,y
∑ I y2

x,y
∑

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= a 0
0 b

⎡

⎣
⎢

⎤

⎦
⎥

[u v] a 0
0 b

⎡

⎣
⎢

⎤

⎦
⎥

u
v

⎡

⎣
⎢

⎤

⎦
⎥=1

au2 +bv2 =1
u2

(a−1/2)2
+

v2

(b−1/2)2
=1

a-1/2

b-1/2

Major axisM
in

or
 a

xi
s

Source: S. Lazebnik

Consider the axis-aligned case (gradients are
either horizontal or vertical)

Interpreting the second moment matrix

M =

I x2
x,y
∑ I xI y

x,y
∑

I xI y
x,y
∑ I y2

x,y
∑

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= a 0
0 b

⎡

⎣
⎢

⎤

⎦
⎥

If either a or b is close to 0, then this is not a corner, so
we want locations where both are large.

Source: S. Lazebnik

Interpreting the second moment matrix

RRM ⎥
⎦

⎤
⎢
⎣

⎡
= −

2

11

0
0
λ

λ

The axis lengths of the ellipse are determined by the
eigenvalues and the orientation is determined by R:

direction of the
slowest change

direction of the
fastest change

(λmax)-1/2

(λmin)-1/2

In the general case, need to diagonalize M:

Source: S. Lazebnik

Interpreting the eigenvalues

λ1

λ2

“Corner” 
λ1 and λ2 are large,  
 λ1 ~ λ2; 
E increases in all
directions

λ1 and λ2 are small;  
E is almost constant
in all directions

“Edge”  
λ1 >> λ2

“Edge”  
λ2 >> λ1

“Flat”
region

Classification of image points with eigenvalues of M:

Source: S. Lazebnik

Corner response function

“Corner” 
R > 0

“Edge”  
R < 0

“Edge”  
R < 0

“Flat”
region

|R| small

2
2121

2)()(trace)det(λλαλλα +−=−= MMR

α: constant (0.04 to 0.06)

Source: S. Lazebnik

The Harris corner detector
1. Compute partial derivatives at each pixel
2. Compute second moment matrix M in a

Gaussian window around each pixel:

C.Harris and M.Stephens, A Combined Corner and Edge Detector,
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
∑∑

∑∑

yx
y

yx
yx

yx
yx

yx
x

IyxwIIyxw

IIyxwIyxw
M

,

2

,

,,

2

),(),(

),(),(

Source: S. Lazebnik

http://www.bmva.org/bmvc/1988/avc-88-023.pdf

The Harris corner detector
1. Compute partial derivatives at each pixel
2. Compute second moment matrix M in a

Gaussian window around each pixel
3. Compute corner response function R

Source: S. Lazebnik

C.Harris and M.Stephens, A Combined Corner and Edge Detector,
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Harris Detector: Steps
Corner response R

Source: S. Lazebnik

The Harris corner detector
1. Compute partial derivatives at each pixel
2. Compute second moment matrix M in a

Gaussian window around each pixel
3. Compute corner response function R
4. Threshold R
5. Find local maxima of response function (non-

maximum suppression)

C.Harris and M.Stephens, A Combined Corner and Edge Detector,
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Source: S. Lazebnik

http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Harris Detector: steps

Source: S. Lazebnik

Harris detector: steps
Find points with large corner response: R > threshold

Source: S. Lazebnik

Harris detector: steps
Take only the points of local maxima of R

Source: S. Lazebnik

Harris detector: steps

Source: S. Lazebnik

Harris detector – responses

Effect: A very precise
corner detector.

Source: D. Hoiem

So far: can localize in x-y, but not scale

Source: D. Hoiem

SIFT keypoint detection

D. Lowe, Distinctive image features from scale-invariant keypoints, IJCV
60 (2), pp. 91-110, 2004.

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Multiscale
• Convolve with Gaussians at different scales

Scale-space representation

Basic idea
• Convolve the image with a “blob filter” at multiple

scales and look for extrema of filter response in
the resulting scale space

T. Lindeberg. Feature detection with automatic scale selection.  
IJCV 30(2), pp 77-116, 1998. Source: S. Lazebnik

http://www.nada.kth.se/cvap/abstracts/cvap198.html

Blob filter
Laplacian of Gaussian: rotationally symmetric
operator for blob detection in 2D

2

2

2

2
2

y
g

x
g

g
∂

∂
+

∂

∂
=∇

Source: S. Lazebnik

Recall: Edge detection

Source: S. Seitz

g
dx
d

f ∗

f

g
dx
d

Edge

Derivative 
of Gaussian

Edge = maximum 
of derivative

Edge detection, take 2

g
dx
d

f 2

2

∗

f

g
dx
d
2

2

Edge

Second derivative 
of Gaussian  
(Laplacian)

Edge = zero crossing 
of second derivative

Source: S. Seitz

From edges to blobs
• Edge = ripple
• Blob = superposition of two ripples

Spatial selection: the magnitude of the Laplacian  
response will achieve a maximum at the center of 
the blob, provided the scale of the Laplacian is  
“matched” to the scale of the blob

maximum

Source: S. Lazebnik

Blob detection in 2D
• Scale-normalized Laplacian of Gaussian:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
=∇ 2

2

2

2
22

norm y
g

x
g

g σ

Source: S. Lazebnik

Scale-space blob detector
1. Convolve image with scale-normalized

Laplacian at several scales

Source: S. Lazebnik

Scale-space blob detector: Example

Source: S. Lazebnik

Scale-space blob detector: Example

Source: S. Lazebnik

Scale-space blob detector
1. Convolve image with scale-normalized

Laplacian at several scales
2. Find maxima of squared Laplacian response in

scale-space

Source: S. Lazebnik

Scale-space blob detector: Example

Source: S. Lazebnik

Efficient implementation
• Approximating the Laplacian with a difference of

Gaussians:

()2 (, ,) (, ,)xx yyL G x y G x yσ σ σ= +

(, ,) (, ,)DoG G x y k G x yσ σ= −

(Laplacian)

(Difference of Gaussians)

σ∇2G =
∂G
∂σ

≈
G(x, y, kσ) − G(x, y, σ)

kσ − σ
.because

Source: S. Lazebnik

Efficient implementation

David G. Lowe. "Distinctive image features from scale-invariant
keypoints.” IJCV 60 (2), pp. 91-110, 2004.

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Eliminating edge responses
• Laplacian has strong response along edges

Source: S. Lazebnik

Eliminating edge responses

Source: S. Lazebnik

• Solution: filter based on Harris response
function over neighboroods containing the
“blobs” (see paper for details).

• Laplacian has strong response along edges

Orientation assignment
• In order to achieve rotation invariance, create

histogram of local gradient directions in the
patch

• Peaks in the histogram correspond to dominant
orientations.

0 2 π

Keypoints + scale + orientation

SIFT descriptors
• Compute gradient in 16x16 window (and

downweight with Gaussian).
• Bin 4x4 samples into 4x4 histograms with 8 bins.
• Threshold and normalize (illumination invariance)
• Final descriptor is a vector of size 4x4x8=128.

Properties of SIFT
Extraordinarily robust detection and description technique
– Can handle changes in viewpoint

• Up to about 60 degree out-of-plane rotation
– Can handle significant changes in illumination

• Sometimes even day vs. night
– Fast and efficient—can run in real time
– Lots of code available

Source: N. Snavely

Model fitting

Keypoints provide local
descriptions of an image.
How can we extract
higher level information?

• Model fitting: given a
parametric model of an
object/transformation,
find the parameters
that best fit the data

simple model: lines simple model: circles

complicated model: car

Source: K. Grauman

Challenges in model fitting
• Which is the right model?
• Does the data contain outliers?
• Are there multiple instances of the model?

Example: line fitting

General methods

• Parameter optimization
– Least squares fit
– Robust least squares

• Hypothesize and test
– RANSAC
– Hough transform

Least squares fitting
•Data: (x1, y1), …, (xn, yn)

•Line equation: yi = m xi + b
•Find (m, b) to minimize

022 =−= yAApA TT

dp
dE

∑ =
−−=

n

i ii bxmyE
1

2)(
(xi, yi)

y=mx+b

() yAAApyAApA TTTT 1−
=⇒=

Source S. Lazebnik

Least squares fitting II
Find (a, b, c) to minimize the sum of squared perpendicular distances

∑ =
−+=

n

i ii dybxaE
1

2)(

(xi, yi)

ax+by+c=0

∑ =
++=

n

i ii cybxaE
1

2)(Unit normal:
N=(a, b)

0)(2
1

=++=
∂
∂

∑ =

n

i ii cybxa
c
E

ybxay
n
b

x
n
a

c
n

i i
n

i i −−=−−= ∑∑ == 11

Solution is eigenvector corresponding to smallest eigenvalue of ATA
pp
ApAp pp ApAp T

TT
TTT minimize1 s.t.minimize ⇒=

Source S. Lazebnik

Least squares: Robustness to noise
• Least squares fit to the red points:

Least squares: Robustness to noise
• Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers

Robust least squares (to deal with outliers)
General approach: minimize
 

 – residual of ith data point w.r.t. model parameters  
� – robust function with scale parameter
ui(θ) θ
ρ σ

The robust function ρ
• Favors a configuration
with small residuals
• Constant penalty for large
residuals

Slide from S. Savarese

∑
i

ρ(ui(θ), σ), u2
i = (axi + bxi + c)2

No closed form solution
-> numerical optimization

RANSAC
• Robust fitting can deal with a few outliers – what if

we have very many?
• Random sample consensus (RANSAC):  

Very general framework for model fitting in the
presence of outliers

• Outline
• Choose a small subset of points uniformly at random
• Fit a model to that subset
• Find all remaining points that are “close” to the model and reject

the rest as outliers
• Do this many times and choose the best model

M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with
Applications to Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp
381-395, 1981.

Source: S. Lazebnik

http://www.ai.sri.com/pubs/files/836.pdf
http://www.ai.sri.com/pubs/files/836.pdf
http://www.ai.sri.com/pubs/files/836.pdf

RANSAC for line fitting example

Source: R. Raguram

RANSAC for line fitting example

Least-squares fit

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

5. Repeat
hypothesize-and-
verify loop

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

5. Repeat
hypothesize-and-
verify loop

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

5. Repeat
hypothesize-and-
verify loop

Uncontaminated sample

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

5. Repeat
hypothesize-and-
verify loop

Source: R. Raguram

RANSAC for line fitting
Repeat N times:

• Draw s points uniformly at random
• Fit line to these s points
• Find inliers to this line among the remaining

points (i.e., points whose distance from the line
is less than t)

• If there are d or more inliers, accept the line and
refit using all inliers

Source: S. Lazebnik

RANSAC pros and cons
• Pros

• Simple and general
• Applicable to many different problems
• Often works well in practice

• Cons
• Lots of parameters to tune
• Doesn’t work well for low inlier ratios (too many iterations,  

or can fail completely)
• Can’t always get a good initialization  

of the model based on the minimum  
number of samples

Source: S. Lazebnik

Hough transform: outline

1. Create a grid of parameter values

2. Each point votes for a set of parameters,
incrementing those values in grid

3. Find maximum or local maxima in grid

Hough transform

x

y

b

m

y = m x + b

Given a set of points, find the curve or line that explains
the data points best

Hough space

Slide from S. Savarese

Hough transform

x

y

Issue : parameter space [m,b] is unbounded…

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy
Accelerators and Instrumentation, 1959

Hough space

ρθθ =+ siny cosx

 θ
ρ

Use a polar representation for the parameter space

 θ

ρ

Slide from S. Savarese

Algorithm outline
• Initialize accumulator H  

to all zeros
• For each feature point (x,y)  

in the image 
 For θ = 0 to 180  
 ρ = x cos θ + y sin θ  
 H(θ, ρ) = H(θ, ρ) + 1  
 end 
end

• Find the value(s) of (θ, ρ) where H(θ, ρ) is a local
maximum

• The detected line in the image is given by  
 ρ = x cos θ + y sin θ

ρ

θ

Hough transform demo
Source: S. Lazebnik

https://www.youtube.com/watch?v=ebfi7qOFLuo

Square Circle

Other shapes

Source: S. Lazebnik

Several lines

Source: S. Lazebnik

1. Image ! Canny

Source: J. Hays

2. Canny ! Hough votes

Source: J. Hays

3. Hough votes ! Edges
 Find peaks and post-process

Source: J. Hays

Incorporating image gradients
• When we detect an edge point,  

we also know its gradient  
orientation

• How does this constrain  
possible lines passing through 
the point? 

• Modified Hough transform: 

 For each edge point (x,y)  
 θ = gradient orientation at (x,y) 
 ρ = x cos θ + y sin θ 
 H(θ, ρ) = H(θ, ρ) + 1 
end

Hough transform for circles

• How many dimensions will the parameter space
have?

• Given an unoriented edge point, what are all
possible bins that it can vote for?

• What about an oriented edge point?

Hough transform for circles

),(),(yxIryx ∇+

x

y

(x,y)
x

y

r

),(),(yxIryx ∇−

image space Hough parameter space

Hough transform conclusions
• Good

– Robust to outliers: each point votes separately
– Fairly efficient (much faster than trying all sets of parameters)
– Provides multiple good fits

• Bad
– Some sensitivity to noise
– Bin size trades off between noise tolerance, precision, and speed/memory
– Can be hard to find sweet spot
– Not suitable for more than a few parameters (grid size grows exponentially)

• Common applications
– Line fitting (also circles, ellipses, etc.)
– Object recognition (parameters are position/scale/orientation)

Source: J. Hays

