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Outline

• Recap of filtering, Fourier transform, Canny edge 
detector. 

• Keypoints and features: Harris corner detector and 
SIFT. 

• Robust estimation: RANSAC and Hough transform.



Digital images

An image is function !  defined on a rectangular array of pixels: f : Ω → V

Ω = {(x, y) | 1 ≤ x ≤ M, 1 ≤ y ≤ N} ⊂ ℤ2 .

For scalar images, the range is usually a discrete set, !  
Thus, !  can also be viewed as a grid of integers.

V = {0,…,2a − 1} .
f



Image filtering
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Gaussian Kernel

• Standard deviation σ: determines extent of smoothing

Source: K. Grauman

σ = 2 with 30 x 30 
kernel

σ = 5 with 30 x 30 
kernel



Discrete 2D Fourier transform
The 2D discrete Fourier transform is defined as 

• Transforms an   image into an   grid of complex 
numbers. 

• Here   are “frequencies” (recall  ). 
• The inverse transform decomposes original image as a weighted 

sum of sines and cosines: 

M × N M × N

u, v eiα = cos α + i sin α

H(u, v) =
1

MN

M−1

∑
x=0

N−1

∑
y=0

f(x, y)e−i2π( ux
M + vy

N )

f(x, y) =
1

MN

M−1

∑
u=0

N−1

∑
v=0

H(u, v)ei2π( ux
M + vy

N )



Image data and frequency domain
• Usually, log-magnitude at every pixel is plotted 
• Low frequencies = long wavelengths, high 

frequencies = short wavelengths (local 
discontinuities). 

• Gaussian filter acts as “low-pass filter”. Useful to 
avoid aliasing. 



Edge detection
• Goal:  Identify sudden changes (discontinuities) in 

an image 
• Intuitively, edges carry most of the semantic and 

shape information from the image

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Sources: D. Lowe and S. Seitz

Edges are 
caused by a 
variety of 
factors



Edge detection
• An edge is a place of rapid change in the image 

intensity function

image
intensity function 

(along horizontal scanline) first derivative

edges correspond to 
extrema of derivative

Source: S.Lazebnik



Effects of noise
Consider a single row or column of the image

Where is the edge?
Source: S. Seitz



Solution: smooth first

• To find edges, look for peaks in )( gf
dx
d

∗

f

g

f * g

)( gf
dx
d

∗

Source: S. Seitz



Derivative theorem of convolution
• Differentiation is convolution, and convolution is 

associative: 

• This saves us one operation:

g
dx
d

fgf
dx
d

∗=∗ )(

g
dx
d

f ∗

f

g
dx
d

Source: S. Seitz



Image Derivatives
• In the discrete case we could take the difference 

between the left and right pixels: 

• Convolution of the image by 

• Problem: Increases noise 
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Derivative of Gaussian filter

* [1 0 -1] = 

Source: D. Hoiem

fggfG xx ** ↑=∗ σσσ
Separable filter:

gσ ∂x Gx
σ* =



Separability of derivative of Gaussian

G∇

G

G xgσ

σg
Gx

σ

Gx
σ(x, y) = gx

σ(x) ⋅ gσ(y)



Directional derivatives

x-direction y-direction

Source: S.Lazebnik



Image gradient
• An image is a function  . The gradient at a point   is a 

vector   

• The gradient points in the direction o most rapid increase in 
intensity. 

• Given  , the direction and magnitude of the gradient are 

  

f(x, y) (x, y)
∇f = [ ∂f

∂x
,

∂f
∂y ] ∈ ℝ2 .

∂f
∂x

,
∂f
∂y

Source: Steve Seitz

θ = tan−1 ( ∂f
∂y / ∂f

∂x )
∥∇f∥ = ( ∂f

∂x )
2

+ ( ∂f
∂y )

2



Compute gradients

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude

Source: D. Hoiem



Building an edge detector

Thresholded norm of the gradient

How to turn 
these thick 
regions of the 
gradient into 
curves?

Source: S.Lazebnik



Non-maximum suppression
• For each location q above threshold, check that the 

gradient magnitude is higher than at neighbors p and r 
along the direction of the gradient 

• May need to interpolate to get the magnitudes at p and r

Source: S.Lazebnik



Non-max suppression

1.5

2

2

4.1

Gradient magnitude at center pixel  is lower 
than the gradient magnitude of a neighbor in 
the direction of the gradient  


! Discard center pixel (set magnitude to 0)

Gradient magnitude at center pixel is greater 
than gradient magnitude of all the neighbors 
in the direction of the gradient 


! Keep center pixel unchanged2.5

1.0
∇f

∇f



Before non-max suppression



After non-max suppression



Hysteresis thresholding
• Check that maximum value of gradient value is 

sufficiently large 
• Use hysteresis: use a high threshold to start 

edge curves and a low threshold to continue 
them.

Source: S. Seitz



Weak pixels but connected

Very strong edge response.  
Let’s start here

Weaker response but it is  
connected to a confirmed  
edge point. Let’s keep it.

Continue…Very strong edge response. 

Let’s start here

Weaker response but it is 

connected to a confirmed 

edge point. Let’s keep it.

Continue…

Weak pixels but isolated

Hysteresis example



Final Canny Edges



Effect of σ

Canny with Canny with original 

The choice of σ depends on desired behavior


• large σ detects large scale edges


• small σ detects fine features

Source: S. Seitz



Canny edge detector
1. Filter image with x, y derivatives of Gaussian. 
2. Find magnitude and orientation of gradient. 
3. Non-maximum suppression: 

– Thin multi-pixel wide “ridges” down to single pixel 
width. 

4. Thresholding and linking (hysteresis): 
– Define two thresholds: low and high. 
– Use the high threshold to start edge curves and the 

low threshold to continue them.



Interest points

Suppose you have to click 
on some point,  go away 
and come back after I 
deform the image, and click 
on the same points again.   

Which points would you 
choose?

original

deformed

Source: D. Hoiem



Interest points and features

• A keypoint / interest point is a characteristic 
part of the image that we can retrieve robustly 
(edges, points, regions). 

• A descriptor is a way of summarizing properties 
of a key point. 

• Keypoint + descriptor = feature (sometimes 
used instead of keypoint).



Applications  
Keypoints are used for: 
– Image alignment  
– 3D reconstruction 
– Motion tracking 
– Robot navigation 
– Indexing and database retrieval 
– Object recognition

Source: S. Lazebnik



Source: S. Lazebnik

We have two images – how do we combine them?

Example: panorama stitching



Example: panorama stitching

We have two images – how do we combine them?

Step 1: extract keypoints
Step 2: match keypoint features

Source: S. Lazebnik



We have two images – how do we combine them?

Example: panorama stitching

Step 1: extract keypoints
Step 2: match keypoint features
Step 3: align images

Source: S. Lazebnik



Characteristics of good keypoints
• Compactness and efficiency 

• Many fewer keypoints than image pixels 
• Saliency 

• Each keypoint is distinctive 
• Locality 

• A keypoint occupies a relatively small area of the image; robust to clutter and 
occlusion 

• Repeatability 
• The same keypoint can be found in several images despite geometric and 

photometric transformations 

Source: S. Lazebnik



K. Grauman, B. Leibe

Overview of keypoint matching

Af Bf

B
B

BA

A A

Tffd BA <),(

1. Detection: identify the 
interest points 

2. Description: Extract 
vector feature 
descriptor surrounding 
each interest point. 

3. Matching: determine 
correspondence 
between descriptors in 
two views.



Corner detection: basic idea
• We should easily recognize the point by looking 

through a small window 
• Shifting a window in any direction should give a 

large change in intensity

“edge”: 
no change along 
the edge direction

“corner”: 
significant change 
in all directions

“flat” region:  
no change in 
all directions

Source: S. Lazebnik



Corner detection
Change in appearance of window   for shift  :W (u, v)

I(x, y)
E(u, v)

E(3,2)

Source: S. Lazebnik

E(u, v) = ∑
(x,y)∈W

I(x + u, y + v) − I(x, y))2



Corner detection
Change in appearance of window   for shift  :W (u, v)

I(x, y)
E(u, v)

E(3,2)

Source: S. Lazebnik

E(u, v) = ∑
(x,y)∈W

(I(x + u, y + v) − I(x, y))2

I(x, y)
E(u, v)

E(0,0)



Taylor approximation
• We approximate   as follows:E(u, v)

I(x + u, x + v) ≈ I(x, y) + Ix(x, y)u + Iy(x, y)v

E(u, v) ≈ ∑
(x,y)∈W

(Ix(x, y)u + Iy(x, y)v)2 = [u v] ⋅ M ⋅ [u
v],

M = ∑
(x,y)∈W [

I2
x IxIy

IxIy I2
y ] =

∑(x,y)∈W I2
x ∑(x,y)∈W IxIy

∑(x,y)∈W IxIy ∑(x,y)∈W I2
y

.where

“second moment matrix”.



• The surface E(u,v) is locally approximated by a 
quadratic form. Let’s try to understand its shape. 

• Specifically, in which directions does it have the 
fastest/slowest change?

Interpreting the second moment matrix

E(u, v)

Source: S. Lazebnik



The sets defined by   is an 
ellipse:

[u v] ⋅ M ⋅ [u
v] = const

Interpreting the second moment matrix

Source: S. Lazebnik



Consider the axis-aligned case (gradients are 
either horizontal or vertical)

Interpreting the second moment matrix

M =

I x2
x,y
∑ I xI y

x,y
∑

I xI y
x,y
∑ I y2

x,y
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Source: S. Lazebnik



Consider the axis-aligned case (gradients are 
either horizontal or vertical)

Interpreting the second moment matrix

M =

I x2
x,y
∑ I xI y

x,y
∑

I xI y
x,y
∑ I y2

x,y
∑

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= a 0
0 b

⎡

⎣
⎢

⎤

⎦
⎥

If either a or b is close to 0, then this is not a corner, so 
we want locations where both are large.

Source: S. Lazebnik



Interpreting the second moment matrix

RRM ⎥
⎦

⎤
⎢
⎣

⎡
= −

2

11

0
0
λ

λ

The axis lengths of the ellipse are determined by the 
eigenvalues and the orientation is determined by R:

direction of the 
slowest change

direction of the 
fastest change

(λmax)-1/2

(λmin)-1/2

In the general case, need to diagonalize M:

Source: S. Lazebnik



Interpreting the eigenvalues

λ1

λ2

“Corner” 
λ1 and λ2 are large,  
 λ1 ~ λ2; 
E increases in all 
directions

λ1 and λ2 are small;  
E is almost constant 
in all directions

“Edge”  
λ1 >> λ2

“Edge”  
λ2 >> λ1

“Flat” 
region

Classification of image points with eigenvalues of M:

Source: S. Lazebnik



Corner response function

“Corner” 
R > 0

“Edge”  
R < 0

“Edge”  
R < 0

“Flat” 
region

|R| small

2
2121

2 )()(trace)det( λλαλλα +−=−= MMR

α: constant (0.04 to 0.06)

Source: S. Lazebnik



The Harris corner detector
1. Compute partial derivatives at each pixel 
2. Compute second moment matrix M in a 

Gaussian window around each pixel: 

C.Harris and M.Stephens, A Combined Corner and Edge Detector, 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.  
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Source: S. Lazebnik

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


The Harris corner detector
1. Compute partial derivatives at each pixel 
2. Compute second moment matrix M in a 

Gaussian window around each pixel  
3. Compute corner response function R

Source: S. Lazebnik

C.Harris and M.Stephens, A Combined Corner and Edge Detector, 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.  

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


Harris Detector: Steps
Corner response R

Source: S. Lazebnik



The Harris corner detector
1. Compute partial derivatives at each pixel 
2. Compute second moment matrix M in a 

Gaussian window around each pixel  
3. Compute corner response function R 
4. Threshold R
5. Find local maxima of response function (non-

maximum suppression)

C.Harris and M.Stephens, A Combined Corner and Edge Detector, 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.  

Source: S. Lazebnik

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


Harris Detector: steps

Source: S. Lazebnik



Harris detector: steps
Find points with large corner response: R > threshold

Source: S. Lazebnik



Harris detector: steps
Take only the points of local maxima of R

Source: S. Lazebnik



Harris detector: steps

Source: S. Lazebnik



Harris detector – responses

Effect: A very precise 
corner detector.

Source: D. Hoiem



So far: can localize in x-y, but not scale

Source: D. Hoiem



SIFT keypoint detection

D. Lowe, Distinctive image features from scale-invariant keypoints, IJCV 
60 (2), pp. 91-110, 2004. 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Multiscale
• Convolve with Gaussians at different scales



Scale-space representation



Basic idea
• Convolve the image with a “blob filter” at multiple 

scales and look for extrema of filter response in 
the resulting scale space

T. Lindeberg. Feature detection with automatic scale selection.  
IJCV 30(2), pp 77-116, 1998. Source: S. Lazebnik

http://www.nada.kth.se/cvap/abstracts/cvap198.html


Blob filter
Laplacian of Gaussian: rotationally symmetric 
operator for blob detection in 2D

2

2

2

2
2

y
g

x
g

g
∂

∂
+

∂

∂
=∇

Source: S. Lazebnik



Recall: Edge detection

Source: S. Seitz

g
dx
d

f ∗

f

g
dx
d

Edge

Derivative 
of Gaussian

Edge = maximum 
of derivative



Edge detection, take 2

g
dx
d

f 2

2

∗

f

g
dx
d
2

2

Edge

Second derivative 
of Gaussian  
(Laplacian)

Edge = zero crossing 
of second derivative

Source: S. Seitz



From edges to blobs
• Edge = ripple 
• Blob = superposition of two ripples

Spatial selection: the magnitude of the Laplacian  
response will achieve a maximum at the center of 
the blob, provided the scale of the Laplacian is  
“matched” to the scale of the blob

maximum

Source: S. Lazebnik



Blob detection in 2D
• Scale-normalized Laplacian of Gaussian:

⎟⎟
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Source: S. Lazebnik



Scale-space blob detector
1. Convolve image with scale-normalized 

Laplacian at several scales

Source: S. Lazebnik



Scale-space blob detector: Example

Source: S. Lazebnik



Scale-space blob detector: Example

Source: S. Lazebnik



Scale-space blob detector
1. Convolve image with scale-normalized 

Laplacian at several scales 
2. Find maxima of squared Laplacian response in 

scale-space

Source: S. Lazebnik



Scale-space blob detector: Example

Source: S. Lazebnik



Efficient implementation
• Approximating the Laplacian with a difference of 

Gaussians:

( )2 ( , , ) ( , , )xx yyL G x y G x yσ σ σ= +

( , , ) ( , , )DoG G x y k G x yσ σ= −

(Laplacian)

(Difference of Gaussians)

σ∇2G =
∂G
∂σ

≈
G(x, y, kσ) − G(x, y, σ)

kσ − σ
.because

Source: S. Lazebnik



Efficient implementation

David G. Lowe. "Distinctive image features from scale-invariant 
keypoints.” IJCV 60 (2), pp. 91-110, 2004. 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Eliminating edge responses
• Laplacian has strong response along edges

Source: S. Lazebnik



Eliminating edge responses

Source: S. Lazebnik

• Solution: filter based on Harris response 
function over neighboroods containing the 
“blobs” (see paper for details).

• Laplacian has strong response along edges



Orientation assignment
• In order to achieve rotation invariance, create 

histogram of local gradient directions in the 
patch 

• Peaks in the histogram correspond to dominant 
orientations.

0 2 π



Keypoints + scale + orientation



SIFT descriptors
• Compute gradient in 16x16 window (and 

downweight with Gaussian). 
• Bin 4x4 samples into 4x4 histograms with 8 bins. 
• Threshold and normalize (illumination invariance) 
• Final descriptor is a vector of size 4x4x8=128.



Properties of SIFT
Extraordinarily robust detection and description technique 
– Can handle changes in viewpoint 

• Up to about 60 degree out-of-plane rotation 
– Can handle significant changes in illumination 

• Sometimes even day vs. night 
– Fast and efficient—can run in real time 
– Lots of code available

Source: N. Snavely



Model fitting

Keypoints provide local 
descriptions of an image. 
How can we extract 
higher level information? 

• Model fitting: given a 
parametric model of an 
object/transformation, 
find the parameters 
that best fit the data

simple model: lines simple model: circles

complicated model: car

Source: K. Grauman



Challenges in model fitting
• Which is the right model? 
• Does the data contain outliers? 
• Are there multiple instances of the model?

Example: line fitting



General methods

• Parameter optimization 
– Least squares fit 
– Robust least squares 

• Hypothesize and test 
– RANSAC 
– Hough transform



Least squares fitting
•Data: (x1, y1), …, (xn, yn) 

•Line equation: yi = m xi + b 
•Find (m, b) to minimize 
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−−=
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i ii bxmyE
1

2)(
(xi, yi)

y=mx+b

( ) yAAApyAApA TTTT 1−
=⇒=

Source  S. Lazebnik



Least squares fitting II
Find (a, b, c) to minimize the sum of squared perpendicular distances
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Source  S. Lazebnik



Least squares: Robustness to noise
• Least squares fit to the red points:



Least squares: Robustness to noise
• Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers



Robust least squares (to deal with outliers)
General approach: minimize 
 

 – residual of ith data point w.r.t. model parameters  
�  – robust function with scale parameter    
ui(θ) θ
ρ σ

The robust function ρ  
• Favors a configuration  
with small residuals 
• Constant penalty for large 
residuals

Slide from S. Savarese

∑
i

ρ(ui(θ), σ), u2
i = (axi + bxi + c)2

No closed form solution 
-> numerical optimization 



RANSAC
• Robust fitting can deal with a few outliers – what if 

we have very many? 
• Random sample consensus (RANSAC):  

Very general framework for model fitting in the 
presence of outliers 

• Outline 
• Choose a small subset of points uniformly at random 
• Fit a model to that subset 
• Find all remaining points that are “close” to the model and reject 

the rest as outliers 
• Do this many times and choose the best model

M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with 
Applications to Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp 
381-395, 1981. 

Source: S. Lazebnik

http://www.ai.sri.com/pubs/files/836.pdf
http://www.ai.sri.com/pubs/files/836.pdf
http://www.ai.sri.com/pubs/files/836.pdf


RANSAC for line fitting example

Source: R. Raguram



RANSAC for line fitting example

Least-squares fit

Source: R. Raguram



RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points 

Source: R. Raguram



RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points 

2. Hypothesize a 
model

Source: R. Raguram



RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points 

2. Hypothesize a 
model 

3. Compute error 
function

Source: R. Raguram



RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points 

2. Hypothesize a 
model 

3. Compute error 
function 

4. Select points 
consistent with 
model 

Source: R. Raguram



RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points 

2. Hypothesize a 
model 

3. Compute error 
function 

4. Select points 
consistent with 
model 

5. Repeat 
hypothesize-and-
verify loop 

Source: R. Raguram



RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points 

2. Hypothesize a 
model 

3. Compute error 
function 

4. Select points 
consistent with 
model 

5. Repeat 
hypothesize-and-
verify loop 

Source: R. Raguram



RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points 

2. Hypothesize a 
model 

3. Compute error 
function 

4. Select points 
consistent with 
model 

5. Repeat 
hypothesize-and-
verify loop 

Uncontaminated sample

Source: R. Raguram



RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points 

2. Hypothesize a 
model 

3. Compute error 
function 

4. Select points 
consistent with 
model 

5. Repeat 
hypothesize-and-
verify loop 

Source: R. Raguram



RANSAC for line fitting
Repeat N times: 

• Draw s points uniformly at random 
• Fit line to these s points 
• Find inliers to this line among the remaining 

points (i.e., points whose distance from the line 
is less than t) 

• If there are d or more inliers, accept the line and 
refit using all inliers

Source: S. Lazebnik



RANSAC pros and cons
• Pros 

• Simple and general 
• Applicable to many different problems 
• Often works well in practice 

• Cons 
• Lots of parameters to tune 
• Doesn’t work well for low inlier ratios (too many iterations,  

or can fail completely) 
• Can’t always get a good initialization  

of the model based on the minimum  
number of samples

Source: S. Lazebnik



Hough transform: outline

1. Create a grid of parameter values 

2. Each point votes for a set of parameters, 
incrementing those values in grid 

3. Find maximum or local maxima in grid



Hough transform

x

y

b

m

y = m x + b

Given a set of points, find the curve or line that explains 
the data points best

Hough space

Slide from S. Savarese



Hough transform

x

y

Issue : parameter space [m,b] is unbounded…

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy 
Accelerators and Instrumentation, 1959 

Hough space

ρθθ =+   siny  cosx

 θ
ρ

Use a polar representation for the parameter space 

 θ

ρ

Slide from S. Savarese



Algorithm outline
• Initialize accumulator H  

to all zeros 
• For each feature point (x,y)  

in the image 
 For θ = 0 to 180  
     ρ = x cos θ + y sin θ  
     H(θ, ρ) = H(θ, ρ) + 1  
    end 
end 

• Find the value(s) of (θ, ρ) where H(θ, ρ) is a local 
maximum 

• The detected line in the image is given by  
 ρ = x cos θ + y sin θ

ρ

θ

Hough transform demo
Source: S. Lazebnik

https://www.youtube.com/watch?v=ebfi7qOFLuo


Square Circle 

Other shapes

Source: S. Lazebnik



Several lines

Source: S. Lazebnik



1. Image ! Canny

Source: J. Hays



2. Canny ! Hough votes

Source: J. Hays



3. Hough votes ! Edges 
 Find peaks and post-process

Source: J. Hays



Incorporating image gradients
• When we detect an edge point,  

we also know its gradient  
orientation 

• How does this constrain  
possible lines passing through 
the point? 

• Modified Hough transform: 

    For each edge point (x,y)  
 θ = gradient orientation at (x,y) 
 ρ = x cos θ + y sin θ 
 H(θ, ρ) = H(θ, ρ) + 1 
end



Hough transform for circles

• How many dimensions will the parameter space 
have? 

• Given an unoriented edge point, what are all 
possible bins that it can vote for? 

• What about an oriented edge point?



Hough transform for circles 

),(),( yxIryx ∇+

x

y

(x,y)
x

y

r

),(),( yxIryx ∇−

image space Hough parameter space



Hough transform conclusions
• Good 

– Robust to outliers: each point votes separately 
– Fairly efficient (much faster than trying all sets of parameters) 
– Provides multiple good fits 

• Bad 
– Some sensitivity to noise 
– Bin size trades off between noise tolerance, precision, and speed/memory 
– Can be hard to find sweet spot 
– Not suitable for more than a few parameters (grid size grows exponentially) 

• Common applications 
– Line fitting (also circles, ellipses, etc.) 
– Object recognition (parameters are position/scale/orientation)

Source: J. Hays


