Introduction to Computer Vision

Instructors: Jean Ponce and Matthew Trager jean.ponce@inria.fr, matthew.trager@cims.nyu.edu

TAs: Jiachen (Jason) Zhu and Sahar Siddiqui jiachen.zhu@nyu.edu, ss12414@nyu.edu

Outline

Image filtering

- Image filters in spatial domain
 - Filter is a mathematical operation on values of each patch
 - Smoothing, sharpening, measuring texture
- Image filters in the frequency domain
 - Filtering is a way to modify the frequencies of images
 - Denoising, sampling, image compression

What is a (digital) image?

An image is function $f: \Omega \to V$ defined on a rectangular array of pixels:

$$\Omega = \{(x, y) \mid 1 \le x \le N_{cols}, \ 1 \le y \le N_{rows}\} \subset \mathbb{Z}^2.$$

For scalar images, the range is usually a discrete set, $V = \{0, ..., 2^a - 1\}$. Thus, *f* can also be viewed as a grid of integers.

The raster image (pixel matrix)

For each pixel, compute function of a neighborhood and output a new value:

$$h[i, j] = g(f[i + k, j + l]_{k,l}).$$

If g is linear, we talk about *linear filtering*:

$$h[i,j] = \sum_{k,h} g(k,l) \cdot f(i+k,j+l) \,.$$

- Same function applied at each position
- Output and input image are typically the same size

Applications

- Enhance images
 - Denoise, resize, increase contrast, etc.
- Extract information from images
 - Texture, edges, distinctive points, etc.
- Detect patterns
 - Template matching
- Convolutional Neural Networks

Example: box filter

- Replace each pixel with a weighted average of its neighborhood.
- The weights are called the filter kernel.
- What are the weights for the average of a 3x3 neighborhood?

"box filter"

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

1	1	1	1
L 	1	1	1
1	1	1	1

h[.,.]

 $h[m,n] = \sum_{k \in I} g[k,l] f[m+k,n+l]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$g[\cdot,\cdot]^{\frac{1}{9}}$$

	1	1	1
	1	1	1
1	1	1	1

h[.,.]

 $h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

 $g[\cdot, \cdot]^{\frac{1}{9}}$

1	1	1	1
	1	1	1
1	1	1	1

h[.,.]

 $h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

g[·,·]¹/₉¹/₁/₁

h[.,.]

0	10	20	30			

 $h[m,n] = \sum_{k \in I} g[k,l] f[m+k,n+l]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

 $g[\cdot,\cdot]^{\frac{1}{2}}$

1	1	1	1
L 	1	1	1
1	1	1	1

h[.,.]

0	10	20	30	30		

 $h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	Ū	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$g[\cdot,\cdot]^{\frac{1}{9}}$$

	1	1	1
	1	1	1
1	1	1	1

h[.,.]

0	10	20	30	30		
			?			

 $h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	1	1	1
	1	1	1
1	1	1	1

h[.,.]

0	10	20	30	30			
					?		
			50				

 $h[m,n] = \sum_{k \in I} g[k,l] f[m+k,n+l]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

h[.,.]

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

 $h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$

Box filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)

Smoothing with box filter

000010000

?

Original

Source: D. Lowe

Original

0	0	0
0	1	0
0	0	0

Filtered (no change)

000001000

?

Original

Source: D. Lowe

Original

0	0	0
0	0	1
0	0	0

Shifted left By 1 pixel

(Note that filter sums to 1)

Original

Source: D. Lowe

9

Original

Sharpening filter

- Accentuates differences with local average

Sharpening

before

after

Other filters

1	0	-1
2	0	-2
1	0	-1

Sobel

Vertical Edge (absolute value)

Other filters

1	2	1
0	0	0
-1	-2	-1

Sobel

Horizontal Edge (absolute value)

Basic gradient filters

Horizontal Gradient

or

Vertical Gradient

or

Filter vs. convolution

Filtering (correlation):

$$h[i,j] = f \otimes g = \sum_{k,h} g[k,l] \cdot f[i+k,j+l].$$

Convolution:

$$h[i, j] = f \star g = \sum_{k, h} g[k, l] \cdot f[i - k, j - l].$$

Clearly equivalent if g[i, j] = g[-i, -j], however in general there are differences.

Some properties

• Linearity:

 $g \star (f_1 + f_2) = g \star f_1 + g \star f_2, \quad g \otimes (f_1 + f_2) = g \otimes f_1 + g \otimes f_2$

• Stationarity: if $T_{[u,v]}(f)[i,j] = f[i-u,j-v]$

$$g \star T_{[u,v]}(f) = T_{[u,v]}(g \star f), \quad g \otimes T_{[u,v]}(f) = T_{[u,v]}(g \otimes f)$$

Theorem: any linear shift-invariant operator can be represented as a convolution

• Associativity and commutativity:

$$g \star (h \star f) = (g \star h) + g \star f, \quad g \otimes (h \otimes f) \neq (g \otimes h) \otimes f$$
$$g \star f = f \star g, \quad g \otimes f \neq f \otimes g$$

Smoothing with box filter revisited

- What's wrong with this picture?
- What's the solution?

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

0.003 0.013 0.022 0.013 0.003	0.013 0.059 0.097 0.059 0.013	0.022 0.097 0.159 0.097 0.022	0.013 0.059 0.097 0.059 0.013	0.003 0.013 0.022 0.013 0.003	

5 x 5, σ = 1

 Constant factor at front makes volume sum to 1 (can be ignored when computing the filter values, as we should renormalize weights to sum to 1 in any case)

Gaussian Kernel

• Standard deviation σ : determines extent of smoothing

Source: K. Grauman

Choosing kernel width

• The Gaussian function has infinite support, but discrete filters use finite kernels

Choosing kernel width

Rule of thumb: set filter half-width to about 3σ

Gaussian vs. box filtering

Source: S. Lazebnik

Gaussian filters

- Convolution with self is another Gaussian
 - So can smooth with small- σ kernel, repeat, and get same result as larger- σ kernel would have
 - Convolving two times with Gaussian kernel with std. dev. σ is same as convolving once with kernel with std. dev. $\sigma\sqrt{2}$
- Separable kernel
 - Factors into product of two 1D Gaussians
 - Discrete example:

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$
Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$
$$= \left(\frac{1}{\sqrt{2\pi\sigma}} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi\sigma}} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of *x* and the other a function of *y*

In this case, the two functions are the (identical) 1D Gaussian

Why is separability useful?

- Separability means that a 2D convolution can be reduced to two 1D convolutions (one along rows and one along columns)
- What is the complexity of filtering an n×n image with an m×m kernel?
 - O(n² m²)
- What if the kernel is separable?
 - O(n² m)

Noise

- Salt and pepper noise: contains random occurrences of black and white pixels
- Impulse noise: contains random occurrences of white pixels

• Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Reducing Gaussian noise

Smoothing with larger standard deviations suppresses noise, but also blurs the image

Source: S. Lazebnik

Reducing salt-and-pepper noise

What's wrong with the results?

3x3

Alternative idea: Median filtering

• A **median filter** operates over a window by selecting the median intensity in the window

Median filter

- Is median filtering linear?
- Let's try filtering

$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Median filter

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers

filters have width 5 :

Gaussian vs. median filtering

Gaussian

Median

Other non-linear filters

- Weighted median (pixels further from center count less)
- Clipped mean (average, ignoring few brightest and darkest pixels)
- Max or min filter
- Bilateral filtering: to avoid blurring edges, only average with similar intensity values.

$$I_{\mathbf{p}}^{\mathbf{b}} = \frac{1}{W_{\mathbf{p}}^{\mathbf{b}}} \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

with $W_{\mathbf{p}}^{\mathbf{b}} = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|)$

Bilateral filters

Border effects

• What about near the edge? need to extrapolate!

- Methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

Images in frequency domain

• Wide range of applications: image analysis, image filtering, image reconstruction, and image compression.

A. Oliva, A. Torralba, P.G. Schyns, "Hybrid Images," SIGGRAPH 2006

Fourier analysis

 Joseph Fourier: "Any function is a weighted combination of sines and cosines."

https://youtu.be/-qgreAUpPwM?t=302

The Fourier transform

• Continuous transform:

$$f: \mathbb{R} \to \mathbb{R}, \qquad \hat{f}(\xi) = \int_{-\infty}^{+\infty} f(x) \ e^{-ix\xi} dx.$$

• Discrete transform:

$$f: [0, N-1] \to \mathbb{R}, \qquad \hat{f}(k) = \frac{1}{N} \sum_{m=0}^{N-1} f(m) \ e^{-\frac{2\pi i}{N}km}.$$

• Intuition: \hat{f} collects coefficients in the representation of f in Fourier basis

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{f}(\xi) e^{i\xi x} d\xi, \qquad f(m) = \sum_{k=0}^{N-1} \hat{f}(k) e^{\frac{2\pi i}{N}km}.$$

Some useful properties

• f discrete $\Leftrightarrow \hat{f}$ periodic

•
$$\hat{f}$$
 real $\Leftrightarrow f(x) = f(-x)$

- Convolution Theorem: $(f \stackrel{\circ}{\star} g) = \hat{f} \cdot \hat{g}$
- Differentiation: $(\hat{f}')(\xi) = i\xi\hat{f}(\xi)$
- Energy conservation: $\int |f(x)|^2 dx = \int |\hat{f}(\xi)|^2 d\xi$

Discrete 2D transform

• Transforms an $M \times N$ pixel grid f(x, y) into an $M \times N$ grid of complex numbers $H(k_x, k_y)$:

$$H(k_x, k_y) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-i2\pi \frac{2\pi}{MN}(k_x x + k_y y)}$$

- Usually, the log-magnitude at every pixel is usually plotted.
- Pixels in the center of the transform correspond to low frequencies/long wavelengths.

Filtering in spatial domain

paright 2000 chill/hill

Source: D. Hoiem

Fourier transform of a scene

Question

1. Match the spatial domain image to the Fourier magnitude image

Source: Hoiem

Low and high pass filtering

Filters in frequency domain

Gaussian

Source: J. Hays

Filters in frequency domain

Box

Source: J. Hays

Subsampling by a factor of 2

Throw away every other row and column to create a 1/2 size image

Aliasing

- Sub-sampling may be dangerous!
- Characteristic errors may appear:
 - Wagon wheels rolling the wrong way in movies
 - Checkerboards disintegrate in ray tracing
 - Striped shirts look funny on color television

Aliasing in video

Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what's happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):

Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

How to sample

- When sampling a signal at discrete intervals, the sampling frequency must be $\ge 2 \times f_{max}$
- f_{max} = max frequency of the input signal
- This will allows to reconstruct the original perfectly from the sampled version

Anti-aliasing

Solutions:

- Sample more often
- Get rid of all frequencies that are greater than half the new sampling frequency
 - Will lose information
 - But it's better than aliasing
 - Apply a smoothing filter

Summary

- Filters are useful tools for manipulating images (denoising, sharpening, etc.)
- Spacial domain: linear filters (box, Gaussian), median filter, bilateral filter.
- Frequency domain: high and low pass filtering, aliasing.

Edge detection

- Goal: Identify sudden changes (discontinuities) in an image
- Intuitively, edges carry most of the semantic and shape information from the image

Edge detection

Ideal: artist's line drawing

• Reality:

Source: S.Lazebnik

Source: D. Hoiem

Source: D. Hoiem
Edge detection

An edge is a place of rapid change in the image intensity function

Source: S.Lazebnik

Effects of noise

Consider a single row or column of the image

Where is the edge?

Solution: smooth first

To find edges, look for peaks in

 $\frac{d}{dx}(f$ *g)

Source: S. Seitz

Derivative theorem of convolution

- Differentiation is convolution, and convolution is associative: $\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$
- This saves us one operation:

Source: S. Seitz

Derivative of Gaussian filter

• Is this filter separable?

Source: D. Hoiem

Tradeoff between smoothing and localization

1 pixel

3 pixels

7 pixels

• Smoothed derivative removes noise, but blurs edge. Also finds edges at different "scales".

Designing an edge detector

- Criteria for a good edge detector:
 - Good detection: find all real edges, ignoring noise or other artifacts
 - Good localization
 - detect edges as close as possible to the true edges
 - return one point only for each true edge point
- Cues of edge detection
 - Differences in color, intensity, or texture across the boundary
 - Continuity and closure
 - High-level knowledge

Canny edge detector

- This is probably the most widely used edge detector in computer vision
- Theoretical model: step-edges corrupted by additive Gaussian noise
- Canny has shown that the first derivative of the Gaussian closely approximates the operator that optimizes the product of *signal-to-noise ratio* and localization

J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Derivative of Gaussian filters

Compute Gradients (DoG)

X-Derivative of Gaussian

Y-Derivative of Gaussian

Gradient Magnitude

Building an edge detector

How to turn these thick regions of the gradient into curves?

Thresholded norm of the gradient

Non-maximum suppression

- For each location q above threshold, check that the gradient magnitude is higher than at neighbors p and r along the direction of the gradient
 - May need to interpolate to get the magnitudes at p and r

Before Non-max Suppression

After non-max suppression

Hysteresis thresholding

- Check that maximum value of gradient value is sufficiently large
 - drop-outs? use hysteresis
 - use a high threshold to start edge curves and a low threshold to continue them.

Canny edge detector

Very strong edge response. Let's start here Weaker response but it is connected to a confirmed edge point. Let's keep it.

Continue...

Final Canny Edges

Effect of σ (Gaussian kernel spread/size)

The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

Canny edge detector

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" down to single pixel width
- 4. Thresholding and linking (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them