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Outline
Image filtering 

• Image filters in spatial domain 
– Filter is a mathematical operation on values of each patch 
– Smoothing, sharpening, measuring texture 

• Image filters in the frequency domain 
– Filtering is a way to modify the frequencies of images 
– Denoising, sampling, image compression



What is a (digital) image?

An image is function !  defined on a rectangular array of pixels: f : Ω → V

Ω = {(x, y) | 1 ≤ x ≤ Ncols, 1 ≤ y ≤ Nrows} ⊂ ℤ2 .

For scalar images, the range is usually a discrete set, !  
Thus, !  can also be viewed as a grid of integers.

V = {0,…,2a − 1} .
f



The raster image (pixel matrix)
0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99
0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91
0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92
0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95
0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85
0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33
0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74
0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93
0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99
0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97
0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93



Image filtering

For each pixel, compute function of a neighborhood 
and output a new value: 

If   is linear, we talk about linear filtering: 

• Same function applied at each position 
• Output and input image are typically the same size

g

h[i, j] = g( f [i + k, j + l]k,l) .

h[i, j] = ∑
k,h

g(k, l) ⋅ f(i + k, j + l) .



Applications

– Enhance images 
• Denoise, resize, increase contrast, etc. 

– Extract information from images 
• Texture, edges, distinctive points, etc. 

– Detect patterns 
• Template matching 

– Convolutional Neural Networks



Example: box filter

• Replace each pixel with a 
weighted average of its 
neighborhood. 

• The weights are called the 
filter kernel. 

• What are the weights for the 
average of a  
3x3 neighborhood?

Slide credit: David Lowe (UBC)
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Box filter

What does it do? 
• Replaces each pixel with 

an average of its 
neighborhood 

• Achieve smoothing effect 
(remove sharp features)

111

111

111

Slide credit: David Lowe (UBC)
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Smoothing with box filter



Practice with linear filters
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Source: D. Lowe



Practice with linear filters
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Original Filtered  
(no change)

Source: D. Lowe



Practice with linear filters
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Practice with linear filters
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Original Shifted left 
By 1 pixel

Source: D. Lowe



Practice with linear filters

Original
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(Note that filter sums to 1)

Source: D. Lowe



Practice with linear filters

Original
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Sharpening filter 
- Accentuates differences with local 
average

Source: D. Lowe



Sharpening

Source: D. Lowe



Other filters
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Vertical Edge 
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Sobel



Other filters
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Basic gradient filters
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Filter vs. convolution
Filtering (correlation): 

Convolution: 

h[i, j] = f ⊗ g = ∑
k,h

g[k, l] ⋅ f [i + k, j + l] .

h[i, j] = f ⋆ g = ∑
k,h

g[k, l] ⋅ f [i − k, j − l] .

Clearly equivalent if  , however in general there are 
differences.

g[i, j] = g[−i, − j]



Some properties
• Linearity: 

• Stationarity: if    

• Associativity and commutativity:

T[u,v]( f )[i, j] = f [i − u, j − v]

g ⋆ ( f1 + f2) = g ⋆ f1 + g ⋆ f2, g ⊗ ( f1 + f2) = g ⊗ f1 + g ⊗ f2

g ⋆ T[u,v]( f ) = T[u,v](g ⋆ f ), g ⊗ T[u,v]( f ) = T[u,v](g ⊗ f )

g ⋆ (h ⋆ f ) = (g ⋆ h) + g ⋆ f, g ⊗ (h ⊗ f ) ≠ (g ⊗ h) ⊗ f

g ⋆ f = f ⋆ g, g ⊗ f ≠ f ⊗ g

Theorem: any linear shift-invariant operator can be represented as a convolution 



Smoothing with box filter revisited
• What’s wrong with this picture? 
• What’s the solution?

Source: D. Forsyth



Gaussian Kernel

• Constant factor at front makes volume sum to 1 (can be 
ignored when computing the filter values, as we should 
renormalize weights to sum to 1 in any case)

0.003   0.013   0.022   0.013   0.003 
0.013   0.059   0.097   0.059   0.013 
0.022   0.097   0.159   0.097   0.022 
0.013   0.059   0.097   0.059   0.013 
0.003   0.013   0.022   0.013   0.003

5 x 5, σ = 1

Source: C. Rasmussen 



Gaussian Kernel

• Standard deviation σ: determines extent of smoothing

Source: K. Grauman

σ = 2 with 30 x 30 
kernel

σ = 5 with 30 x 30 
kernel



Choosing kernel width
• The Gaussian function has infinite support, but 

discrete filters use finite kernels

Source: K. Grauman



Choosing kernel width
Rule of thumb: set filter half-width to about  3σ



Gaussian vs. box filtering

Source: S. Lazebnik



Gaussian filters

• Convolution with self is another Gaussian 
• So can smooth with small-σ kernel, repeat, and get same result as 

larger-σ kernel would have 
• Convolving two times with Gaussian kernel with std. dev. σ  

is same as convolving once with kernel with std. dev.    

• Separable kernel 
• Factors into product of two 1D Gaussians 
• Discrete example:

σ 2

Source: K. Grauman
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Separability of the Gaussian filter

Source: D. Lowe



Why is separability useful?
• Separability means that a 2D convolution can be 

reduced to two 1D convolutions (one along rows 
and one along columns) 

• What is the complexity of filtering an n×n image 
with an m×m kernel?  
• O(n2 m2) 

• What if the kernel is separable? 
• O(n2 m)



Noise

• Salt and pepper noise: 
contains random 
occurrences of black and 
white pixels 

• Impulse noise: contains 
random occurrences of 
white pixels 

• Gaussian noise: 
variations in intensity 
drawn from a Gaussian 
normal distribution

Source: S. Seitz



Smoothing with larger standard deviations suppresses noise, 
but also blurs the image

Reducing Gaussian noise

Source: S. Lazebnik



Reducing salt-and-pepper noise
What’s wrong with the results?

3x3 5x5 7x7

Source: S. Lazebnik



Alternative idea: Median filtering
• A median filter operates over a window by 

selecting the median intensity in the window 
 
 
 
 
 
 

Source: K. Grauman



Median filter
• Is median filtering linear? 
• Let’s try filtering
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Median filter
• What advantage does median filtering have over 

Gaussian filtering? 
• Robustness to outliers

Source: K. Grauman



Gaussian vs. median filtering
3x3 5x5 7x7

Gaussian

Median

Source: S. Lazebnik



Other non-linear filters

• Weighted median (pixels further from center count less) 
• Clipped mean (average, ignoring few brightest and 

darkest pixels) 
• Max or min filter 
• Bilateral filtering:  to avoid blurring edges, only average 

with similar intensity values.

 

http://vision.ai.uiuc.edu/?p=1455


Bilateral filters



Border effects
• What about near the edge? need to extrapolate! 

– Methods: 
• clip filter (black) 
• wrap around 
• copy edge 
• reflect across edge

Source: S. Marschner



Images in frequency domain
• Wide range of applications: image analysis, 

image filtering, image reconstruction, and image 
compression. 

A. Oliva, A. Torralba, P.G. Schyns,  
“Hybrid Images,” SIGGRAPH 2006

http://cvcl.mit.edu/hybridimage.htm


Fourier analysis
• Joseph Fourier: “Any function is a weighted 

combination of sines and cosines.”

https://youtu.be/-qgreAUpPwM?t=302

https://youtu.be/-qgreAUpPwM?t=302


The Fourier transform
• Continuous transform: 

• Discrete transform: 

• Intuition:   collects coefficients in the 
representation of   in Fourier basis

̂f
f

f : ℝ → ℝ, ̂f(ξ) = ∫
+∞

−∞
f(x) e−ixξ dx .

f : [0, N − 1] → ℝ, ̂f(k) =
1
N

N−1

∑
m=0

f(m) e− 2πi
N km .

f(x) =
1

2π ∫
+∞

−∞

̂f(ξ)eiξxdξ, f(m) =
N−1

∑
k=0

̂f(k)e 2πi
N km .



Some useful properties
•   

•   

• Convolution Theorem:  

• Differentiation:   

• Energy conservation: 

f discrete  ⇔ ̂f periodic 

̂f real  ⇔ f(x) = f(−x)

̂( f′�)(ξ) = iξ ̂f(ξ)

̂( f ⋆ g) = ̂f ⋅ ̂g

∫ | f(x) |2 dx = ∫ | ̂f(ξ) |2 dξ



Discrete 2D transform
• Transforms an   pixel grid   into an 

  grid of complex numbers  : 

• Usually, the log-magnitude at every pixel is 
usually plotted. 

• Pixels in the center of the transform correspond to 
low frequencies/long wavelengths.

M × N f(x, y)
M × N H(kx, ky)

H(kx, ky) =
1

MN

M−1

∑
x=0

N−1

∑
y=0

f(x, y)e−i2π 2π
MN (kxx+kyy)



Filtering in spatial domain
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Source: D. Hoiem



Filtering in frequency domain

FFT

FFT

Inverse FFT

=

Source: D. Hoiem



Fourier transform of a scene

Source: J. Hays



Question
1. Match the spatial domain image to the Fourier 

magnitude image

1 54

A

32

C

B

D
E

Source: Hoiem



Low and high pass filtering

Source: J. Hays



Filters in frequency domain

Source: J. Hays

Gaussian



Filters in frequency domain

Source: J. Hays

Box



Throw away every other row and 
column to create a 1/2 size image 

Subsampling by a factor of 2

Source: D. Hoiem



Aliasing

• Sub-sampling may be dangerous! 
• Characteristic errors may appear:  

– Wagon wheels rolling the wrong way in movies 
– Checkerboards disintegrate in ray tracing 
– Striped shirts look funny on color television



Aliasing in video

Slide by Steve Seitz



• When sampling a signal at discrete intervals, the 
sampling frequency must be ≥ 2 × fmax 

• fmax = max frequency of the input signal 
• This will allows to reconstruct the original 

perfectly from the sampled version

good

bad

v v v

How to sample

Source: D. Hoiem



Anti-aliasing

Solutions: 
• Sample more often 

• Get rid of all frequencies that are greater than half 
the new sampling frequency 
– Will lose information 
– But it’s better than aliasing 
– Apply a smoothing filter

Source: D. Hoiem



Summary

• Filters are useful tools for manipulating images 
(denoising, sharpening, etc.) 

• Spacial domain: linear filters (box, Gaussian), 
median filter, bilateral filter. 

• Frequency domain: high and low pass filtering, 
aliasing.



Edge detection
• Goal:  Identify sudden changes (discontinuities) in 

an image 
• Intuitively, edges carry most of the semantic and 

shape information from the image

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Sources: D. Lowe and S. Seitz

Edges are 
caused by a 
variety of 
factors



Edge detection
• Ideal: artist’s line drawing 

• Reality:

Source: S.Lazebnik



Closeup of edges

Source: D. Hoiem



Closeup of edges

Source: D. Hoiem



Closeup of edges

Source: D. Hoiem



Closeup of edges

Source: D. Hoiem



Edge detection
• An edge is a place of rapid change in the image 

intensity function

image
intensity function 

(along horizontal scanline) first derivative

edges correspond to 
extrema of derivative

Source: S.Lazebnik



Effects of noise
Consider a single row or column of the image

Where is the edge?
Source: S. Seitz



Solution: smooth first

• To find edges, look for peaks in )( gf
dx
d

∗

f

g

f * g

)( gf
dx
d

∗

Source: S. Seitz



Derivative theorem of convolution
• Differentiation is convolution, and convolution is 

associative: 

• This saves us one operation:

g
dx
d

fgf
dx
d

∗=∗ )(

g
dx
d

f ∗

f

g
dx
d

Source: S. Seitz



Derivative of Gaussian filter

• Is this filter 
separable?

* [1 0 -1] = 

Source: D. Hoiem



• Smoothed derivative removes noise, but blurs 
edge. Also finds edges at different “scales”.

1 pixel 3 pixels 7 pixels

Tradeoff between smoothing and localization

Source: D. Forsyth



Designing an edge detector

• Criteria for a good edge detector: 
– Good detection: find all real edges, ignoring noise or other 

artifacts 
– Good localization 

• detect edges as close as possible to the true edges 
• return one point only for each true edge point 

• Cues of edge detection 
– Differences in color, intensity, or texture across the 

boundary 
– Continuity and closure 
– High-level knowledge

Source: L. Fei-Fei



Canny edge detector

• This is probably the most widely used edge 
detector in computer vision 

• Theoretical model: step-edges corrupted by 
additive Gaussian noise 

• Canny has shown that the first derivative of the 
Gaussian closely approximates the operator that 
optimizes the product of signal-to-noise ratio 
and localization

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. 
Pattern Analysis and Machine Intelligence, 8:679-714, 1986. 

Source: L. Fei-Fei

http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4


Derivative of Gaussian filters

x-direction y-direction

Source: S.Lazebnik



Compute Gradients (DoG)

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude

Source: D. Hoiem



Building an edge detector

Thresholded norm of the gradient

How to turn 
these thick 
regions of the 
gradient into 
curves?

Source: S.Lazebnik



Non-maximum suppression
• For each location q above threshold, check that the 

gradient magnitude is higher than at neighbors p and r 
along the direction of the gradient 

• May need to interpolate to get the magnitudes at p and r

Source: S.Lazebnik



Before Non-max Suppression



After non-max suppression



Hysteresis thresholding

• Check that maximum value of gradient 
value is sufficiently large 
– drop-outs?  use hysteresis 

• use a high threshold to start edge curves and a 
low threshold to continue them.

Source: S. Seitz



Weak pixels but connected

Very strong edge response.  
Let’s start here

Weaker response but it is  
connected to a confirmed  
edge point. Let’s keep it.

Continue…Very strong edge response. 

Let’s start here

Weaker response but it is 

connected to a confirmed 

edge point. Let’s keep it.

Continue…

Weak pixels but isolated

Canny edge detector



Final Canny Edges



Effect of σ (Gaussian kernel spread/size)

Canny with Canny with original 

The choice of σ depends on desired behavior 
• large σ detects large scale edges 
• small σ detects fine features

Source: S. Seitz



Canny edge detector
1. Filter image with x, y derivatives of Gaussian  
2. Find magnitude and orientation of gradient 
3. Non-maximum suppression: 

– Thin multi-pixel wide “ridges” down to single pixel 
width 

4. Thresholding and linking (hysteresis): 
– Define two thresholds: low and high 
– Use the high threshold to start edge curves and the 

low threshold to continue them


