
Introduction to
Computer Vision

Instructors: Jean Ponce and Matthew Trager

jean.ponce@inria.fr, matthew.trager@cims.nyu.edu

TAs: Jiachen (Jason) Zhu and Sahar Siddiqui

jiachen.zhu@nyu.edu, ss12414@nyu.edu

mailto:jean.ponce@inria.fr
mailto:matthew.trager@cims.nyu.edu
mailto:jiachen.zhu@nyu.edu
mailto:ss12414@nyu.edu

Outline

• Training neural networks

• Object detection with CNNs

Parametric supervised learning

• Training examples

• A function class
• A loss function

• Goal: minimize the empirical risk

• Hope that this “generalizes”: if is a r.v., we would like to
minimize

(x1, y1), …, (xn, yn) ∈ 𝒳 × 𝒴
ℱ = {fθ : 𝒳 → 𝒴 | θ ∈ ℝd}

ℓ : 𝒴 × 𝒴 → ℝ

(X, Y)

L̂(θ) =
1
n

n

∑
i=1

ℓ(fθ(xi), yi)

L(θ) = 𝔼[ℓ(fθ(X), Y)]

Neural networks

A neural network architecture describes a particular family of
functions: .

The parameters are the network’s weights.

fθ : 𝒳 → 𝒴

θ ∈ ℝd

Feedforward NN (MLP)

A feedforward NN is a composition of linear an non-linear functions,
for example:

where , , and is a non-linear map
acting coordinate-wise.

Wi ∈ ℝdi×di−1 θ = (Wh, …, W1) ρ

fθ(x) : ℝd0 → ℝdh, fθ(x) = WhρWh−1ρ…W2ρW1x,

Non-linearity

• The nonlinearity should be (almost everywhere)
differentiable.

ρ

Sigmoid: Rectified linear unit (ReLU): ρ(t) =
1

1 + e−t
ρ(t) = max(0, t)

Neural networks for images

image Fully connected layer
Source: S. Lazebnik

image

Neural networks for images

Convolutional layer
Source: S. Lazebnik

image

feature map

learned
weights

Neural networks for images

Convolutional layer
Source: S. Lazebnik

image

feature map

learned
weights

Neural networks for images

Convolutional layer
Source: S. Lazebnik

Convolution as feature extraction

Input Feature Map

.

.

.

Source: S. Lazebnik

image

feature map

learned
weights

Neural networks for images

Convolutional layer
Source: S. Lazebnik

image
next
layerConvolutional layer

+ ReLU

Neural networks for images

Source: S. Lazebnik

Input Image

Convolution
(Learned)

Non-linearity

Spatial pooling

Feature maps

Input Feature Map

.

.

.

Key operations in a CNN

Source: R. Fergus, Y. LeCun

Input Image

Convolution
(Learned)

Non-linearity

Spatial pooling

Feature maps

Key operations in a CNN

Source: R. Fergus, Y. LeCun

Rectified Linear Unit (ReLU)

Input Image

Convolution
(Learned)

Non-linearity

Spatial pooling

Feature maps

Max

Key operations in a CNN

Source: R. Fergus, Y. LeCun

Key operations in a CNN

Softmax layer:

Source: S. Lazebnik

σ(z)i =
ezi

∑K
j=1 ez

j

Loss functions
The objective to minimize is of the form

Examples for :
• Regression:

– Quadratic loss:

• Classification:
– Cross-entropy:

Classification is usually better! (easier problem)

ℓ

ℓ(y, ̂y) = − ∑
i

yi log(̂yi), y ∈ {0,1}d, ̂y ∈ [0,1]d .

ℓ(y, ̂y) = ∥y − ̂y∥2
2, y, ̂y ∈ ℝd

L(θ) =
n

∑
i=1

ℓ(fθ(xi), yi)

Training of multi-layer networks
• Find network weights to minimize the error between true

and estimated labels of training examples:

• Update weights by gradient descent:

w1
w2

L(θ) =
1
n

n

∑
i=1

ℓ(fθ(xi), yi)

θt+1 = θt − γt
1
n

n

∑
i=1

∂
∂θ

ℓ(fθ(xi), yi)

Gradient descent

• Need to choose the learning rate policy
• Can get stuck in a local minima (is not convex)
• Each step can be expensive to compute if the dataset is large

γt
L(θ)

θt+1 = θt − γt
1
n

n

∑
i=1

∂
∂θ

ℓ(fθ(xi), yi)

Stochastic gradient descent
• Idea: instead of computing the gradient, compute an

approximation

Note that in expectation

θt+1 = θt − γt
1
n

n

∑
i=1

∂
∂θ

ℓ(fθ(xi), yi)

θt+1 = θt − γt
∂
∂θ

ℓ(fθ(xit), yit)

𝔼(θt+1 |θt) = θt+1 = θt − γt
1
n

n

∑
i=1

∂
∂θ

ℓ(fθ(xi), yi)

Batch SGD
• It’s faster to compute several gradients in parallel
• Some variance is good, too much can be bad

 compute gradient estimates on a batch instead of a single
sample.

• In practice, using batches as large as possible so that the
network fits in the GPU memory

→

θt+1 = θt − γt
1
K

K

∑
k=1

∂
∂θ

ℓ(fθ(xik,t), yik,t)

Beyond SGD
• Many other algorithms: see https://ruder.io/optimizing-gradient-

descent/

• GD with momentum: encourage directions that are coherent:

• Adagrad, Adadelta, RMSProp, ADAM…

• All these optimizers are coded in standard deep learning
libraries

vt = ηvt−1 + γ∇θt

θt+1 = θt − vt

https://ruder.io/optimizing-gradient-descent/
https://ruder.io/optimizing-gradient-descent/

Backpropagation
• AKA “reverse-mode automatic differentiation” (“chain rule”)

– not finite differences
– not symbolic differentiation

Simple example: if , then compute y = fh(fh−1(…f1(w0))), wi = fi(wi−1)

dy
dwi

=
dy

dwi+1

dwi+1

dwi

Other example:
with

f(x, y, z) = (x + y)z,
x = − 2,y = 5,z = − 4

Source: http://cs231n.github.io/optimization-2/

Initialization

• Since loss is not convex, initialization is really important!
• If two neurons on the same layer are initialized with the

same weight, they will stay the same.
• For ReLU activations, PyTorch uses “Kaiming Uniform”:

wi ∼ 𝒰 [− k, k] where k =
1

nin

Regularization
Several techniques for regularization (to avoid
overfitting):

• L2 penalization on the weights (also called weight decay)

• Dropout: only keep a neuron active with some probability ,
or set it to zero otherwise.

• Early stopping
• Data augmentation

p

L(θ) =
n

∑
i=1

ℓ(fθ(xi), yi) + λ∥θ∥2

http://playground.tensorflow.org/

Interactive Demo

http://playground.tensorflow.org/

Common problem: vanishing/exploding gradients

• If all linear layers have width 1, and are initialized at :

• Depending on the value of , the gradient with
respect to will be huge or very small.

• Similar effects happen for more complex deep
networks (even worst if non-linearities have ~0
gradients).

α

α
w1

Vanishing/exploding gradients: solutions

• Use ReLU (non-saturating)

• Use skip-connections

• Use batch-normalization

Batch normalization

• Additional layer to avoid vanishing or exploding
signal.

• Idea: normalize the data everywhere in the network
using estimates of the mean/variance

• are learned, are estimated over a mini-batch.
• Batch-norm layers are typically placed just before

non-linearities

α, β μ, σ

Typical modern network: Resnet
• Identical layers are repeated many times

• 3x3 convolution kernels + BN + ReLUs.
• Skip connections.
• Only one fully connected layer at the end.

K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image
Recognition, CVPR 2016 (Best Paper)

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

AlexNet and VGGNet

K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale
Image Recognition, ICLR 2015

Image source

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture09.pdf

GoogLeNet

 C. Szegedy et al., Going deeper with convolutions, CVPR 2015

https://arxiv.org/abs/1409.4842

ResNet

K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image
Recognition, CVPR 2016 (Best Paper)

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

ImageNet Challenge

• ~14 million labeled images, 20k classes

• Images gathered from Internet

• Human labels via Amazon MTurk

• ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC):  
1.2 million training images, 1000 classes

• Starting with 2015, image classification is
not part of ILSVRC challenge (but people
continue to benchmark on the data)

www.image-net.org/challenges/LSVRC/

http://www.image-net.org/challenges/LSVRC/

Comparing architectures

https://culurciello.github.io/tech/2016/06/04/nets.html

https://culurciello.github.io/tech/2016/06/04/nets.html
https://culurciello.github.io/tech/2016/06/04/nets.html
https://culurciello.github.io/tech/2016/06/04/nets.html
https://culurciello.github.io/tech/2016/06/04/nets.html

How to use a trained network for a new task?

• Take the vector of activations from one of the
fully connected (FC) layers and treat it as an off-
the-shelf feature

• Train a new classifier layer on top of the FC layer
• Fine-tune the whole network.

FC
vector

Classifier
layer

More general pre-training than ImageNet?

• Goal: learn generic features, that can be useful for
other tasks.

• Idea of “self supervised” learning: find auxiliary task
which allows to learn useful features

Puzzle solving

Image completion

Predicting the future

Free localization from classification
• Apply densely a classification network and look at the

results:

Neural networks for object detection

What are the challenges of object detection?

• Images may contain more than one class, multiple
instances from the same class

• Bounding box localization
• Evaluation

Image sourceSource: S. Lazebnik

https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088

Object detection evaluation
• At test time, predict bounding boxes, class labels, and

confidence scores
• For each detection, determine whether it is a true or false

positive
• PASCAL criterion: Area(GT Det) / Area(GT Det) > 0.5
• For multiple detections of the same ground truth  

box, only one considered a true positive

∩ ∪

cat

dog

cat: 0.8

dog: 0.6

dog: 0.55

Ground truth (GT)

Source: S. Lazebnik

Object detection evaluation
• At test time, predict bounding boxes, class labels,

and confidence scores
• For each detection, determine whether it is a true or

false positive
• For each class, plot Recall-Precision curve and

compute Average Precision (area under the curve)
• Take mean of AP over classes to get mAP

Precision:
true positive detections /  
total detections
Recall:
true positive detections /  
total positive test instances

Source: S. Lazebnik

Simple approach: Sliding window detection

• Slide a window across the image and evaluate a detection
model at each location

• Thousands of windows to evaluate: efficiency and low false positive rates
are essential

• Difficult to extend to a large range of scales, aspect ratios

Detection

Histograms of oriented gradients (HOG)
• Partition image into blocks and compute histogram of

gradient orientations in each block

Image credit: N. Snavely

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR
2005

Source: S. Lazebnik

http://lear.inrialpes.fr/pubs/2005/DT05

Pedestrian detection with HOG
• Train a pedestrian template using a linear support vector

machine

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR
2005

positive training
examples

negative training
examples

Source: S. Lazebnik

http://lear.inrialpes.fr/pubs/2005/DT05

Pedestrian detection with HOG
• Train a pedestrian template using a linear support vector

machine
• At test time, convolve feature map with template
• Find local maxima of response
• For multi-scale detection, repeat over multiple levels of a

HOG pyramid

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR
2005

TemplateHOG feature map Detector response map

Source: S. Lazebnik

http://lear.inrialpes.fr/pubs/2005/DT05

Example detections

[Dalal and Triggs, CVPR 2005]Source: S. Lazebnik

Discriminative part-based models
• Single rigid template usually not enough to represent

a category
– Many objects (e.g. humans) are articulated, or have

parts that can vary in configuration  

– Many object categories look very different from
different viewpoints, or from instance to instance

Slide by N. SnavelySource: S. Lazebnik

Discriminative part-based models

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection with
Discriminatively Trained Part Based Models, PAMI 32(9), 2010

Root
filter

Part
filters

Deformation
weights

Source: S. Lazebnik

http://people.cs.uchicago.edu/~pff/papers/lsvm-pami.pdf
http://people.cs.uchicago.edu/~pff/papers/lsvm-pami.pdf

Discriminative part-based models

Multiple components

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection with
Discriminatively Trained Part Based Models, PAMI 32(9), 2010

Source: S. Lazebnik

http://people.cs.uchicago.edu/~pff/papers/lsvm-pami.pdf
http://people.cs.uchicago.edu/~pff/papers/lsvm-pami.pdf

Discriminative part-based models

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection with
Discriminatively Trained Part Based Models, PAMI 32(9), 2010

http://people.cs.uchicago.edu/~pff/papers/lsvm-pami.pdf
http://people.cs.uchicago.edu/~pff/papers/lsvm-pami.pdf

Conceptual approach: Proposal-driven detection

• Generate and evaluate a few hundred region proposals
• Proposal mechanism can take advantage of low-level perceptual

organization cues
• Proposal mechanism can be category-specific or category-

independent, hand-crafted or trained
• Classifier can be slower but more powerful

Source: S. Lazebnik

Selective search for detection
• Use hierarchical segmentation: start with small

superpixels and merge based on diverse cues

J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders, Selective Search for Object
Recognition, IJCV 2013

http://koen.me/research/selectivesearch/
http://koen.me/research/selectivesearch/

R-CNN: Region proposals + CNN features

Input image

ConvNet

ConvNet

ConvNet

SVMs

SVMs

SVMs

Warped image regions

Forward each region
through ConvNet

Classify regions with SVMs

Region proposals

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation, CVPR 2014.

Source: R. Girshick

http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf
http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf
http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf

R-CNN details

• Regions: ~2000 Selective Search proposals
• Network: AlexNet pre-trained on ImageNet (1000 classes),

fine-tuned on PASCAL (21 classes)
• Final detector: warp proposal regions, extract fc7 network

activations (4096 dimensions), classify with linear SVM
• Bounding box regression to refine box locations
• Performance: mAP of 53.7% on PASCAL 2010  

(vs. 35.1% for Selective Search and 33.4% for Deformable
Part Models)

Source: S. Lazebnik

R-CNN pros and cons
• Pros

• Accurate!
• Any deep architecture can immediately be “plugged in”

• Cons
• Not a single end-to-end system

• Fine-tune network with softmax classifier (log loss)
• Train post-hoc linear SVMs (hinge loss)
• Train post-hoc bounding-box regressions (least squares)

• Training is slow (84h), takes a lot of disk space
• 2000 CNN passes per image

• Inference (detection) is slow (47s / image with VGG16)

Fast R-CNN

ConvNet

Forward whole image through ConvNet

Conv5 feature map of image

RoI Pooling layer

Linear +
softmax

FCs Fully-connected layers

Softmax classifier

Region
proposals

Linear Bounding-box regressors

R. Girshick, Fast R-CNN, ICCV 2015Source: R. Girshick

http://arxiv.org/pdf/1504.08083.pdf

RoI pooling
• “Crop and resample” a fixed-size feature

representing a region of interest out of the outputs of
the last conv layer

• Use nearest-neighbor interpolation of coordinates, max pooling

RoI
pooling

layer

Conv feature map

FC layers
…

Region of Interest
(RoI)

RoI
feature

Source: R. Girshick, K. He

Prediction
• For each RoI, network predicts probabilities for C+1

classes (class 0 is background) and four bounding
box offsets for C classes

R. Girshick, Fast R-CNN, ICCV 2015

http://arxiv.org/pdf/1504.08083.pdf

Fast R-CNN training

ConvNet

Linear +
softmax

FCs

Linear

Log loss + smooth L1 loss

Trainable

Multi-task loss

R. Girshick, Fast R-CNN, ICCV 2015Source: R. Girshick

http://arxiv.org/pdf/1504.08083.pdf

Multi-task loss
• Loss for ground truth class , predicted class

probabilities , ground truth box , and predicted
box :

• Regression loss: smooth L1 loss on top of log space
offsets relative to proposal

𝑦
𝑃(𝑦) 𝑏

�̂�

𝐿reg(𝑏, �̂�) = ∑
𝑖={𝑥,𝑦,𝑤,h}

smooth𝐿1(𝑏𝑖 − �̂�𝑖)

softmax loss regression loss

𝐿(𝑦, 𝑃, 𝑏, �̂�) = − log𝑃(𝑦) + 𝜆𝕀[𝑦 ≥ 1]𝐿reg(𝑏, �̂�)

Fast R-CNN results

Fast R-CNN R-CNN

Train time (h) 9.5 84

- Speedup 8.8x 1x
Test time / image 0.32s 47.0s

Test speedup 146x 1x

mAP 66.9% 66.0%

Timings exclude object proposal time, which is equal for all methods.
All methods use VGG16 from Simonyan and Zisserman.

Source: R. Girshick

Faster R-CNN

CNN

feature map

Region
proposals

CNN

feature map

Region Proposal
Network

S. Ren, K. He, R. Girshick, and J. Sun, Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks, NIPS 2015

share features

http://arxiv.org/pdf/1506.01497.pdf
http://arxiv.org/pdf/1506.01497.pdf
http://arxiv.org/pdf/1506.01497.pdf

Region proposal network (RPN)
• Slide a small window (3x3) over the conv5 layer

• Predict object/no object
• Regress bounding box coordinates with reference to anchors  

(3 scales x 3 aspect ratios)

One network, four losses

image

CNN

feature map

Region Proposal Network

proposals

RoI pooling

Classification
loss

Bounding-box
regression loss

…

Classification
loss

Bounding-box
regression loss

Source: R. Girshick, K. He

Faster R-CNN results

Streamlined detection architectures
• The Faster R-CNN pipeline separates proposal

generation and region classification:

• Is it possible do detection in one shot?

Conv feature
map of the

entire image

Region
Proposals

RoI
features

RPN

RoI
pooling

Classification +
Regression

Detections

Conv feature
map of the

entire image
Detections

Classification +
Regression

Source: S. Lazebnik

YOLO
• Divide the image into a coarse grid and directly

predict class label and a few candidate boxes for
each grid cell

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You Only Look Once: Unified, Real-Time
Object Detection, CVPR 2016

https://pjreddie.com/media/files/papers/yolo_1.pdf
https://pjreddie.com/media/files/papers/yolo_1.pdf

YOLO
1. Take conv feature maps at 7x7 resolution
2. Add two FC layers to predict, at each location,  

a score for each class and 2 bboxes w/ confidences
– For PASCAL, output is 7x7x30 (30 = 20 + 2*(4+1))

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You Only Look Once: Unified, Real-Time
Object Detection, CVPR 2016Source: S. Lazebnik

https://pjreddie.com/media/files/papers/yolo_1.pdf
https://pjreddie.com/media/files/papers/yolo_1.pdf

YOLO
• Objective function:

Regression

Object/no object
confidence

Class prediction

YOLO: Results
• Each grid cell predicts only two boxes and can only

have one class – this limits the number of nearby
objects that can be predicted

• Localization accuracy suffers compared to Fast(er) R-
CNN due to coarser features, errors on small boxes

• 7x speedup over Faster R-CNN (45-155 FPS vs. 7-18
FPS)

Performance on PASCAL 2007

SSD

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. Berg, SSD: Single Shot
MultiBox Detector, ECCV 2016.

• Similarly to YOLO, predict bounding boxes directly from
conv maps

• Unlike YOLO, do not use FC layers and predict different
size boxes from conv maps at different resolutions

• Similarly to RPN, use anchors

http://arxiv.org/pdf/1512.02325.pdf
http://arxiv.org/pdf/1512.02325.pdf

SSD

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. Berg, SSD: Single Shot
MultiBox Detector, ECCV 2016.

http://arxiv.org/pdf/1512.02325.pdf
http://arxiv.org/pdf/1512.02325.pdf

Object detection overview
• Different choices for “base network”:

– VGG, ResNet…
• Object detection architecture:

– Region-based: R-CNN, Fast R-CNN, Faster R-CNN
– Single shot: YOLO, SSD

• Faster R-CNN is slower but more accurate.
• YOLO/SSD are faster but less accurate.

Huang et al. “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017

