Introduction to Computer Vision

Instructors: Jean Ponce and Matthew Trager jean.ponce@inria.fr, matthew.trager@cims.nyu.edu

TAs: Jiachen (Jason) Zhu and Sahar Siddiqui jiachen.zhu@nyu.edu, ss12414@nyu.edu

Outline

- Training neural networks
- Object detection with CNNs

Parametric supervised learning

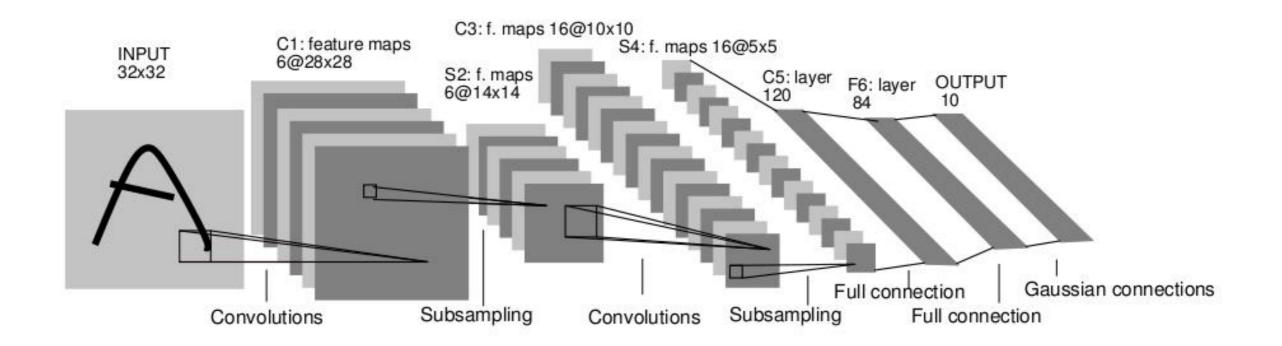
- Training examples $(x_1, y_1), \dots, (x_n, y_n) \in \mathcal{X} \times \mathcal{Y}$
- A function class $\mathscr{F} = \{f_{\theta} : \mathscr{X} \to \mathscr{Y} \mid \theta \in \mathbb{R}^d\}$
- A loss function $\ell:\mathcal{Y}\times\mathcal{Y}\to\mathbb{R}$
- Goal: minimize the empirical risk

$$\hat{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(f_{\theta}(x_i), y_i)$$

• Hope that this "generalizes": if (X, Y) is a r.v., we would like to minimize

$$L(\theta) = \mathbb{E}[\ell(f_{\theta}(X), Y)]$$

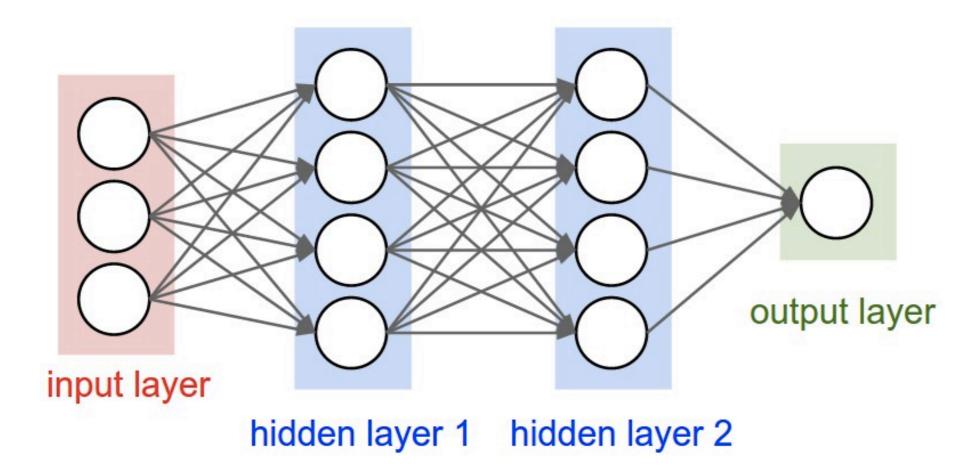
Neural networks



A neural network architecture describes a particular family of functions: $f_{\theta} : \mathcal{X} \to \mathcal{Y}$.

The parameters $\theta \in \mathbb{R}^d$ are the network's *weights*.

Feedforward NN (MLP)



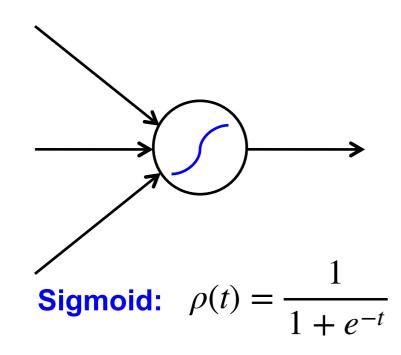
A feedforward NN is a composition of linear an non-linear functions, for example:

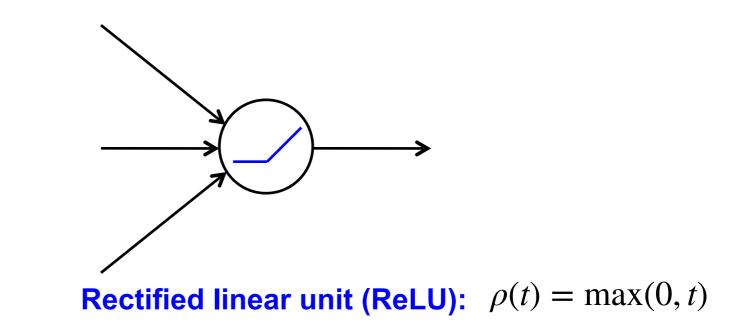
$$f_{\theta}(x): \mathbb{R}^{d_0} \to \mathbb{R}^{d_h}, \qquad f_{\theta}(x) = W_h \rho W_{h-1} \rho \dots W_2 \rho W_1 x,$$

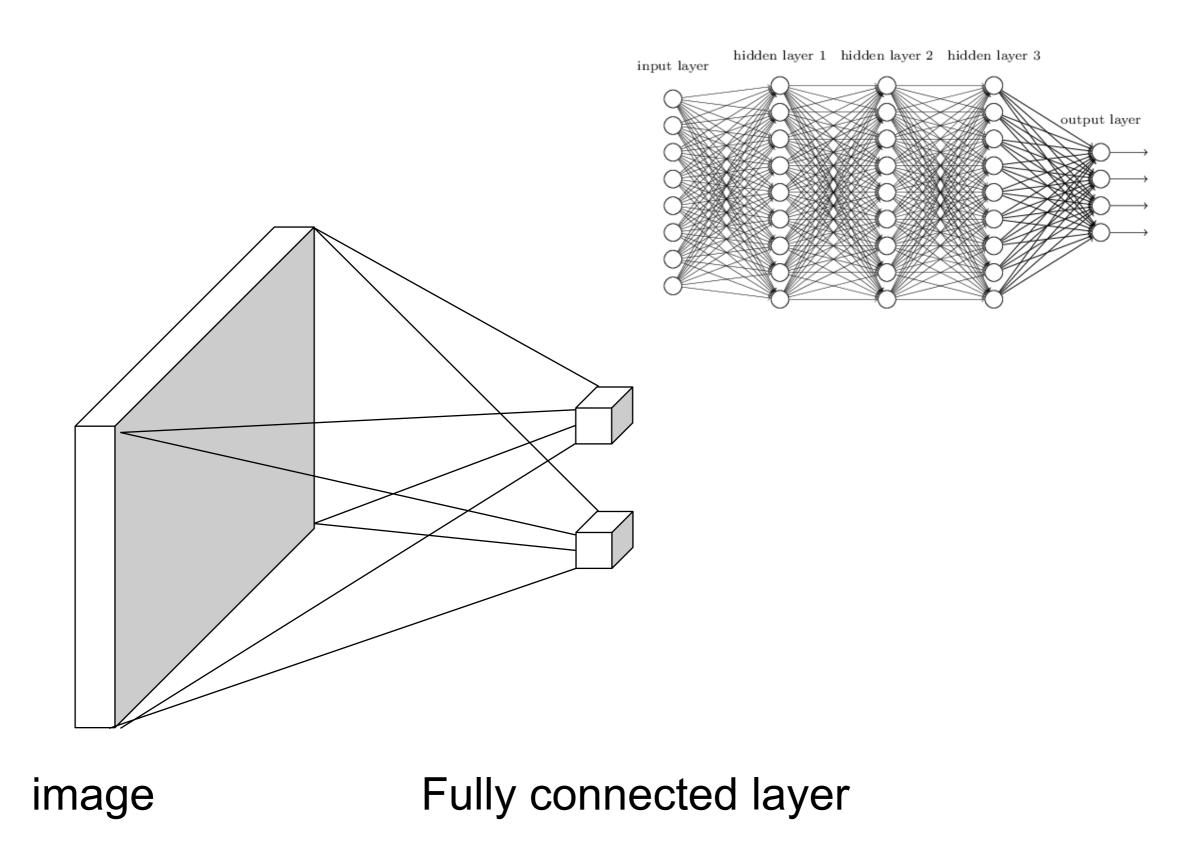
where $W_i \in \mathbb{R}^{d_i \times d_{i-1}}$, $\theta = (W_h, ..., W_1)$, and ρ is a non-linear map acting coordinate-wise.

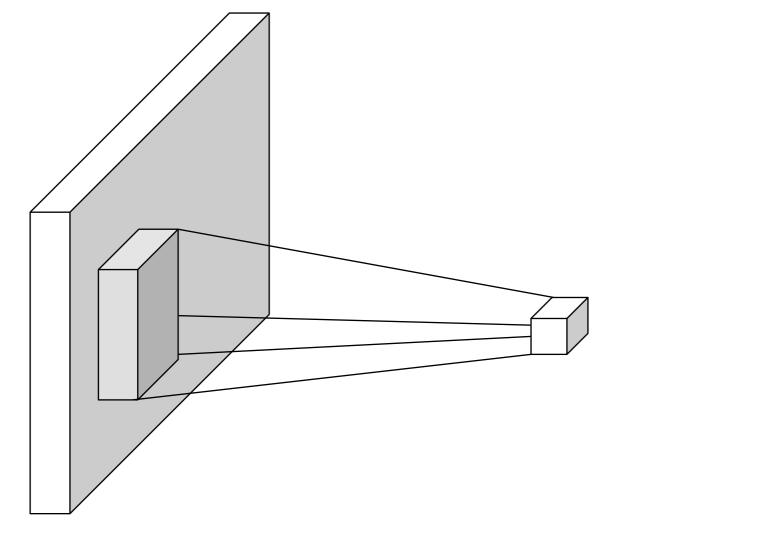
Non-linearity

- The nonlinearity ρ should be (almost everywhere) differentiable.



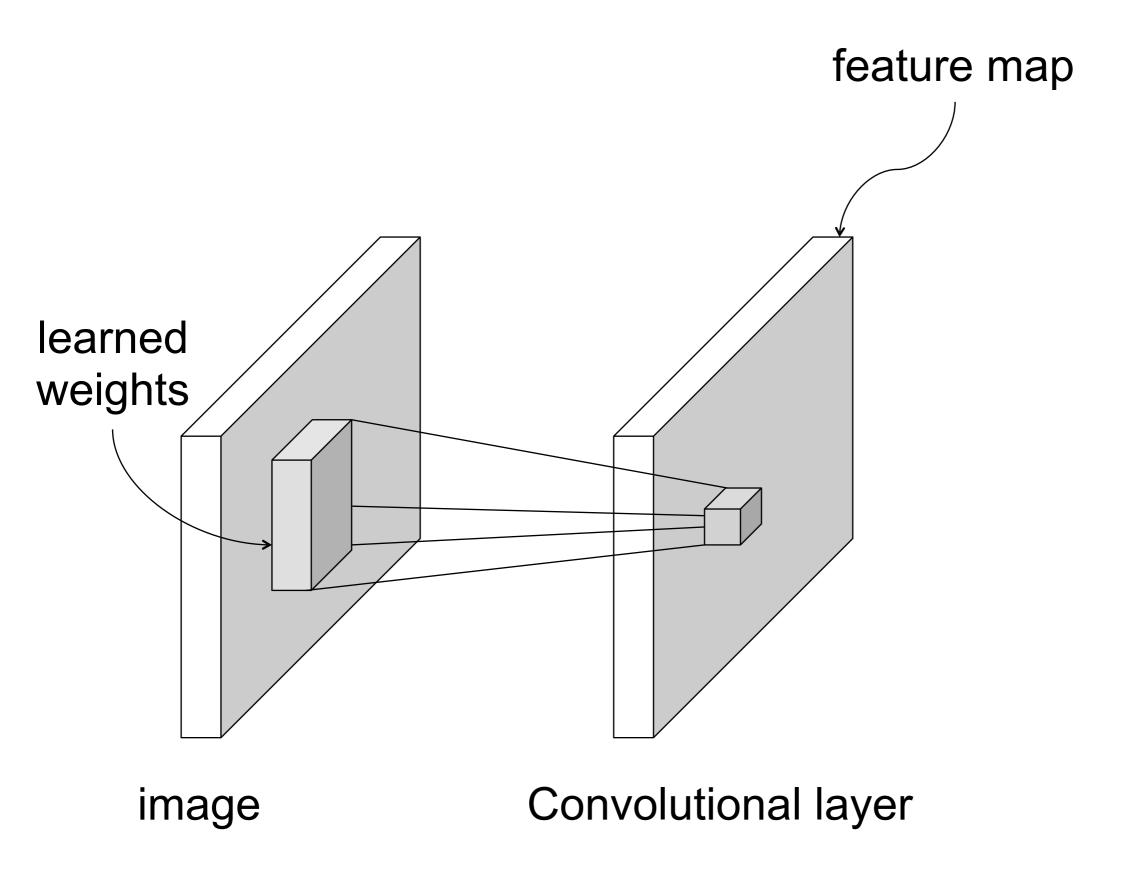


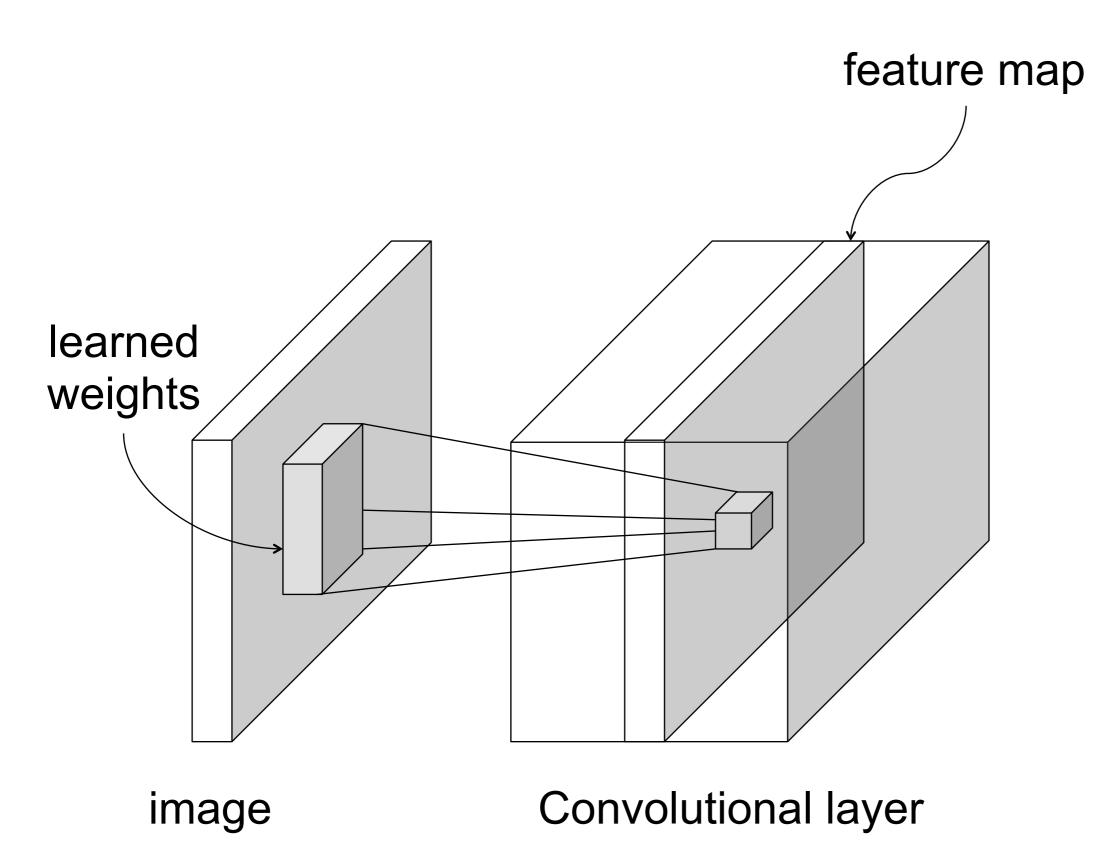




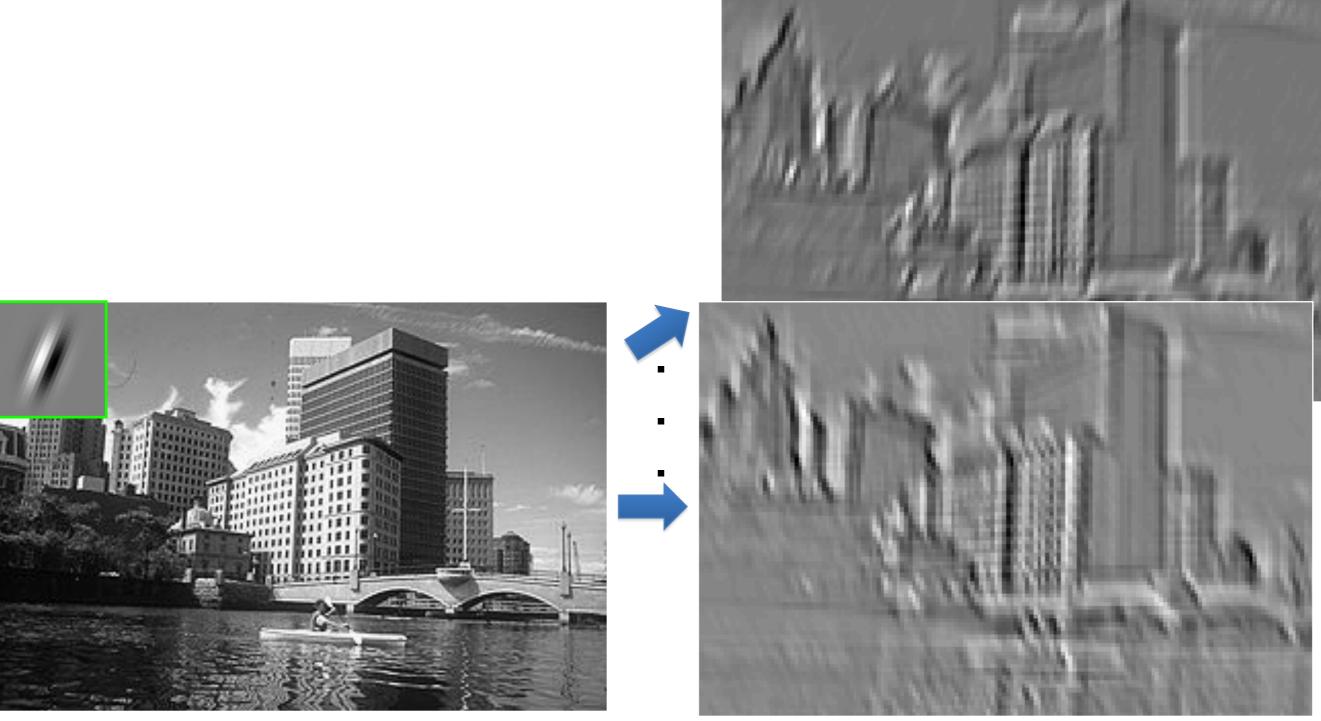
image

Convolutional layer





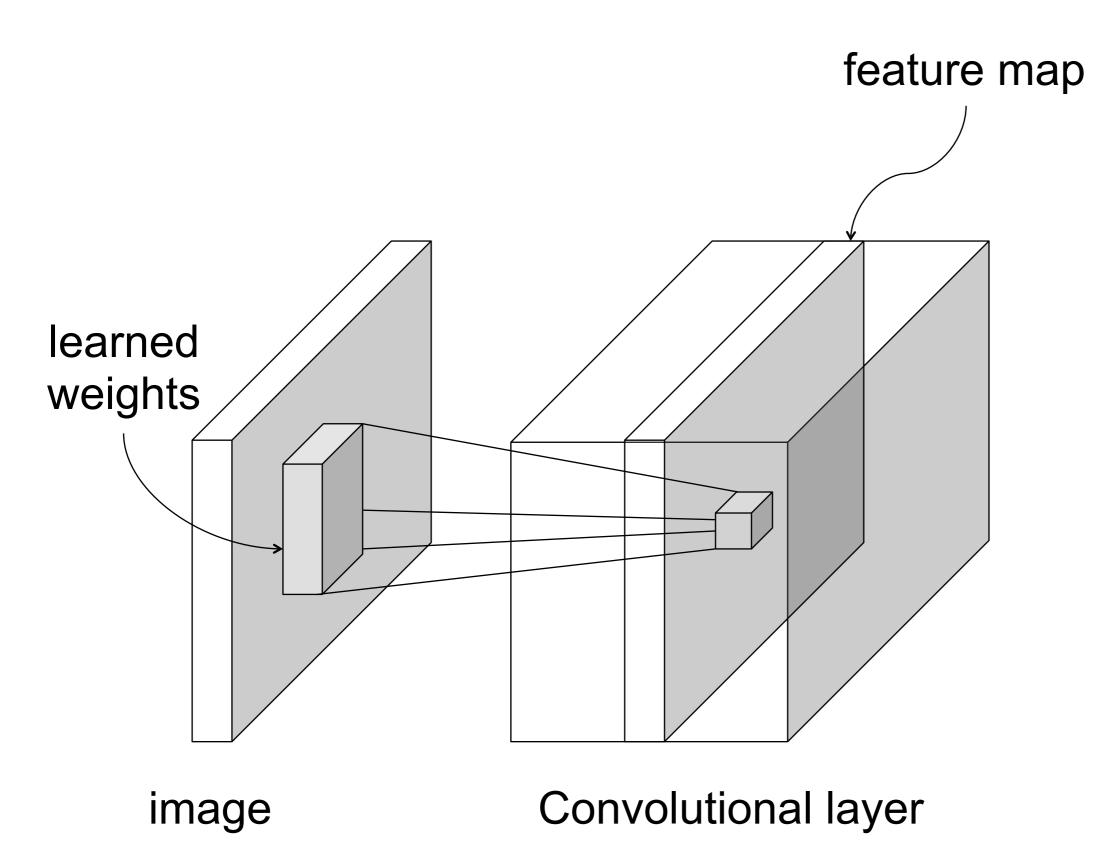
Convolution as feature extraction

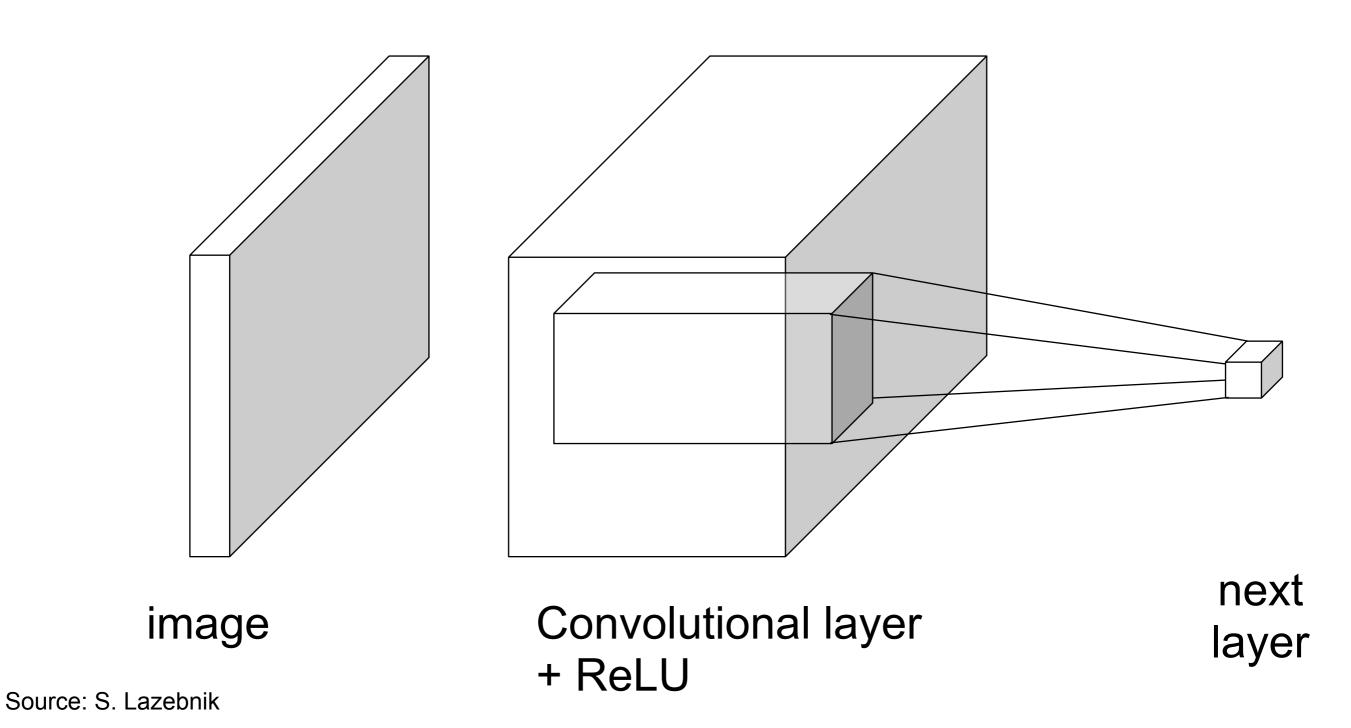


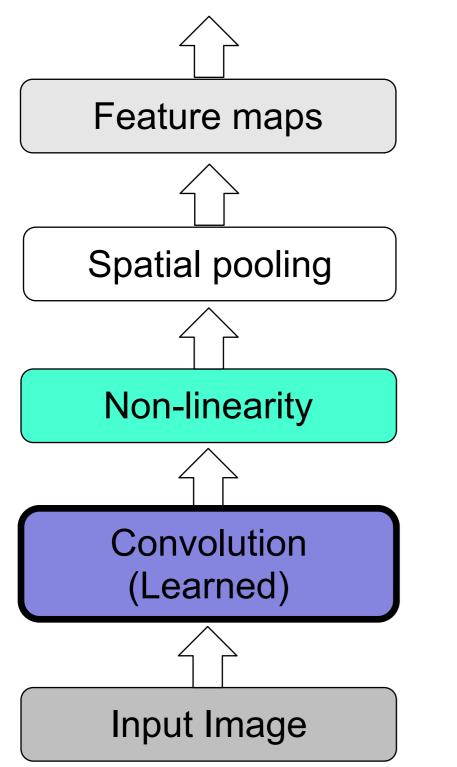
Feature Map

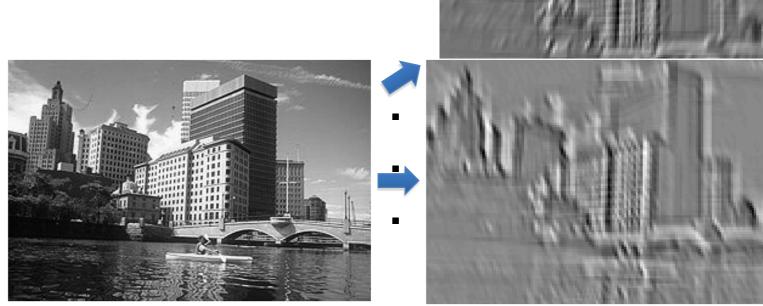
Source: S. Lazebnik

Input





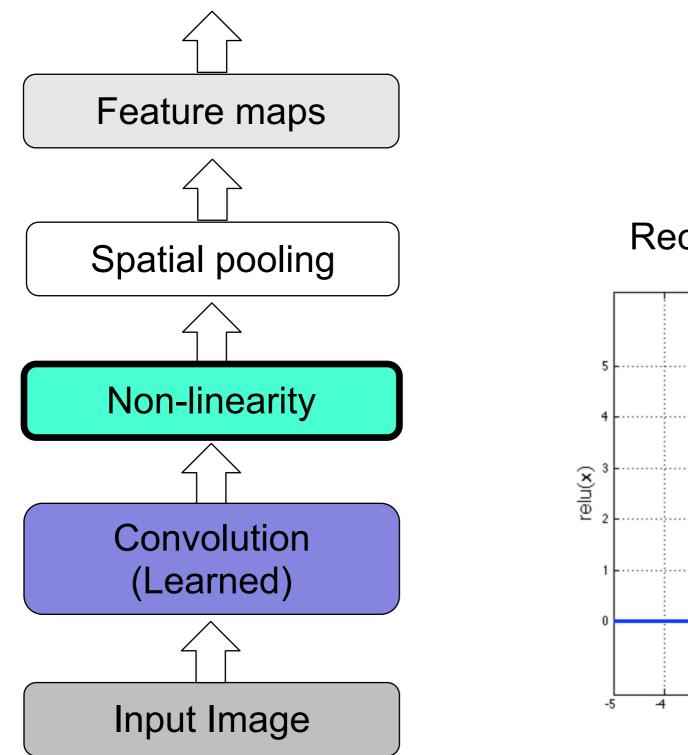




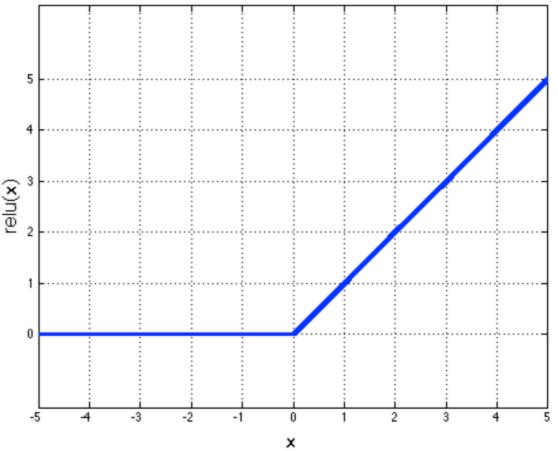
Input

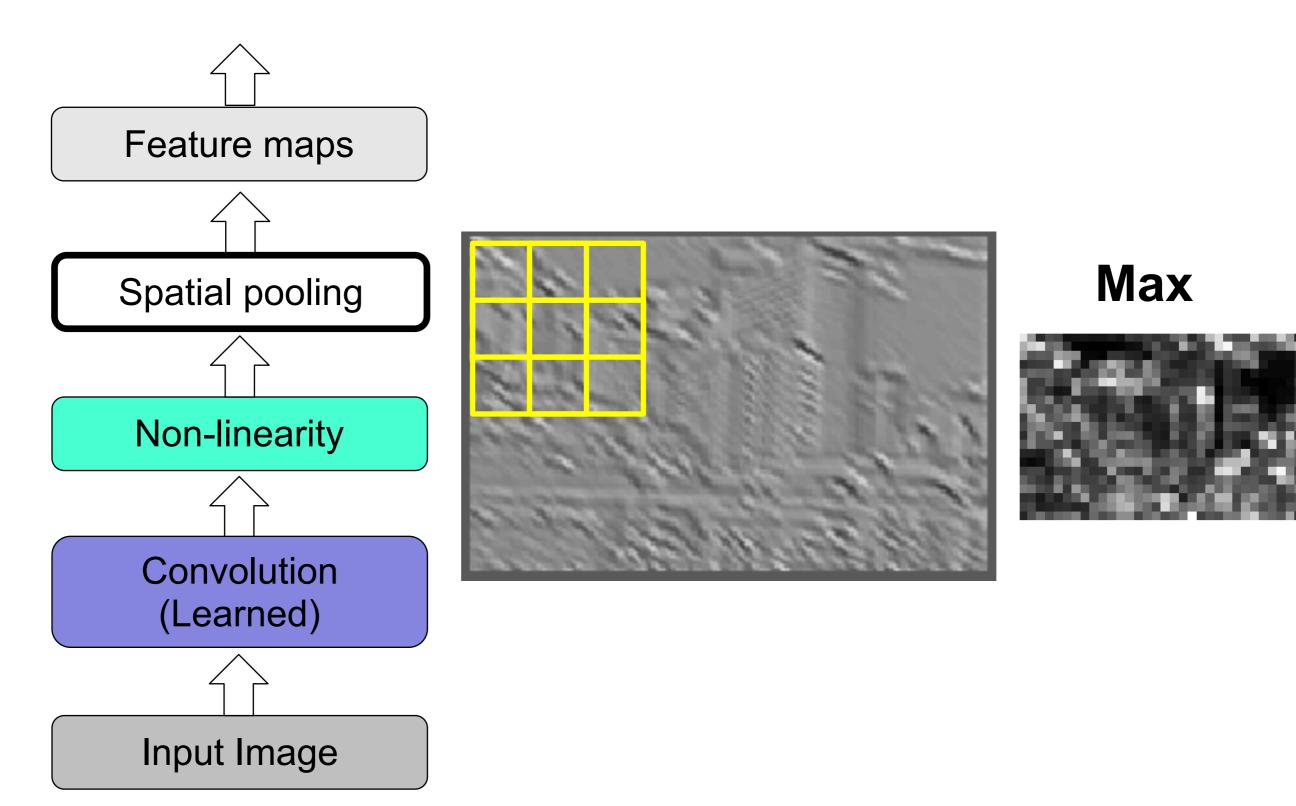
Feature Map

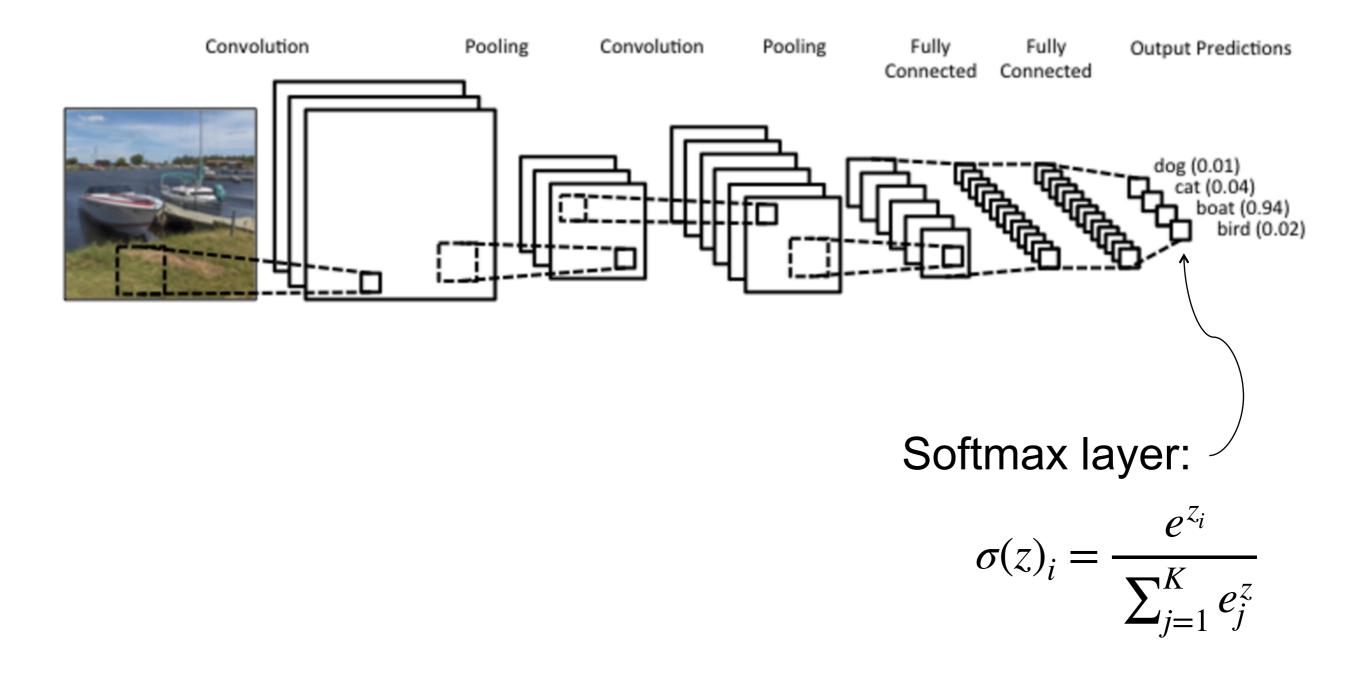
Source: R. Fergus, Y. LeCun



Rectified Linear Unit (ReLU)







Loss functions

The objective to minimize is of the form

$$L(\theta) = \sum_{i=1}^{n} \ell(f_{\theta}(x_i), y_i)$$

Examples for ℓ :

- Regression:
 - Quadratic loss: $\ell(y, \hat{y}) = \|y \hat{y}\|_2^2$, $y, \hat{y} \in \mathbb{R}^d$
- Classification:

- Cross-entropy:
$$\ell(y, \hat{y}) = -\sum_{i} y_i \log(\hat{y}_i), y \in \{0, 1\}^d, \hat{y} \in [0, 1]^d$$
.

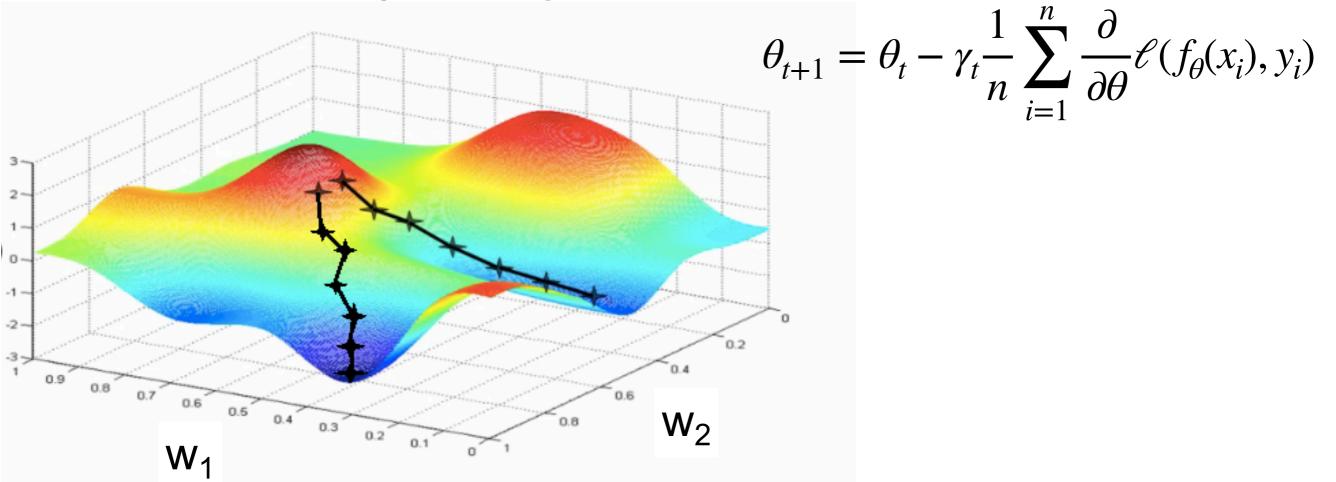
Classification is usually better! (easier problem)

Training of multi-layer networks

• Find network weights to minimize the error between true and estimated labels of training examples:

$$L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(f_{\theta}(x_i), y_i)$$

• Update weights by gradient descent:



Gradient descent

$$\theta_{t+1} = \theta_t - \gamma_t \frac{1}{n} \sum_{i=1}^n \frac{\partial}{\partial \theta} \ell(f_{\theta}(x_i), y_i)$$

- Need to choose the learning rate policy γ_t
- Can get stuck in a local minima ($L(\theta)$ is not convex)
- Each step can be expensive to compute if the dataset is large

Stochastic gradient descent

 Idea: instead of computing the gradient, compute an approximation

$$\begin{aligned} \theta_{t+1} &= \theta_t - \gamma_t \frac{1}{n} \sum_{i=1}^n \frac{\partial}{\partial \theta} \ell(f_{\theta}(x_i), y_i) \\ &\downarrow \\ \theta_{t+1} &= \theta_t - \gamma_t \frac{\partial}{\partial \theta} \ell(f_{\theta}(x_{i_t}), y_{i_t}) \end{aligned}$$

Note that in expectation

$$\mathbb{E}(\theta_{t+1} \mid \theta_t) = \theta_{t+1} = \theta_t - \gamma_t \frac{1}{n} \sum_{i=1}^n \frac{\partial}{\partial \theta} \mathcal{E}(f_{\theta}(x_i), y_i)$$

Batch SGD

- It's faster to compute several gradients in parallel
- Some variance is good, too much can be bad
- \rightarrow compute gradient estimates on a batch instead of a single sample.

$$\theta_{t+1} = \theta_t - \gamma_t \frac{1}{K} \sum_{k=1}^K \frac{\partial}{\partial \theta} \ell(f_{\theta}(x_{i_k,t}), y_{i_k,t})$$

 In practice, using batches as large as possible so that the network fits in the GPU memory

Beyond SGD

- Many other algorithms: see <u>https://ruder.io/optimizing-gradient-descent/</u>
- GD with momentum: encourage directions that are coherent:

$$v_t = \eta v_{t-1} + \gamma \nabla_{\theta_t}$$
$$\theta_{t+1} = \theta_t - v_t$$

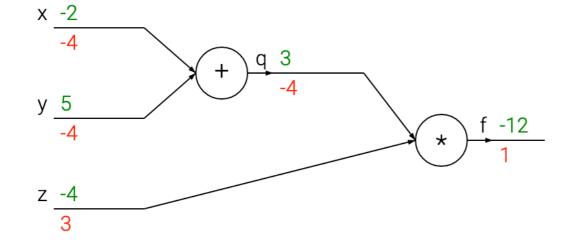
- Adagrad, Adadelta, RMSProp, ADAM...
- All these optimizers are coded in standard deep learning libraries

Backpropagation

- AKA "reverse-mode automatic differentiation" ("chain rule")
 - not finite differences
 - not symbolic differentiation

Simple example: if $y = f_h(f_{h-1}(...f_1(w_0))), w_i = f_i(w_{i-1})$, then compute

$$\frac{dy}{dw_i} = \frac{dy}{dw_{i+1}} \frac{dw_{i+1}}{dw_i}$$



Other example: f(x, y, z) = (x + y)z, with x = -2, y = 5, z = -4

Source: http://cs231n.github.io/optimization-2/

Initialization

- Since loss is not convex, initialization is really important!
- If two neurons on the same layer are initialized with the same weight, they will stay the same.
- For ReLU activations, PyTorch uses "Kaiming Uniform":

$$w_i \sim \mathcal{U}\left[-\sqrt{k}, \sqrt{k}\right]$$
 where $k = \frac{1}{n_{in}}$

Regularization

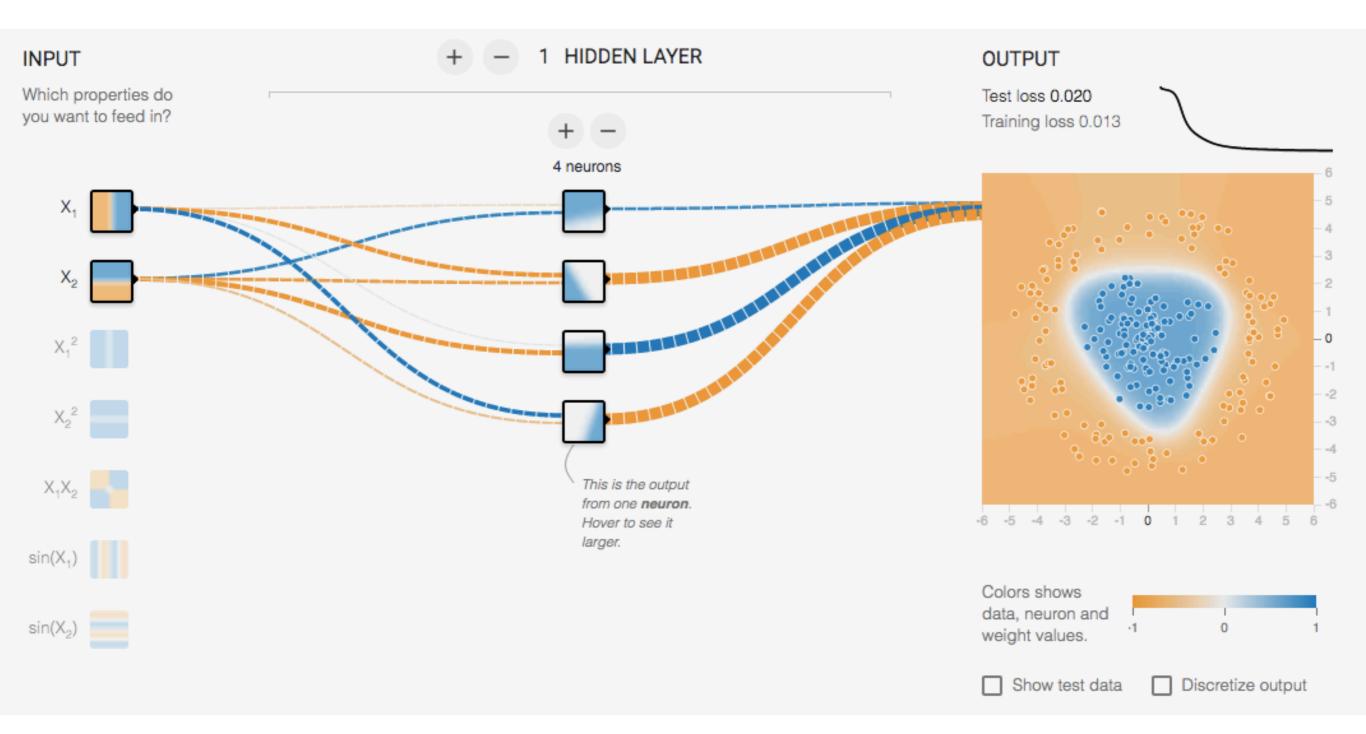
Several techniques for regularization (to avoid overfitting):

• L2 penalization on the weights (also called weight decay)

$$L(\theta) = \sum_{i=1}^{n} \ell(f_{\theta}(x_i), y_i) + \lambda \|\theta\|^2$$

- Dropout: only keep a neuron active with some probability p, or set it to zero otherwise.
- Early stopping
- Data augmentation

Interactive Demo



http://playground.tensorflow.org/

Common problem: vanishing/exploding gradients

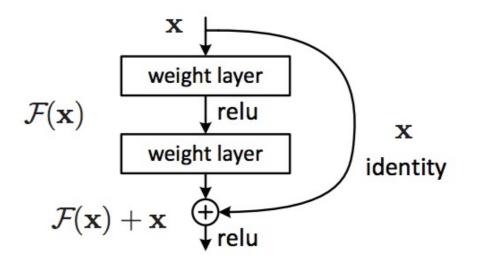
• If all linear layers have width 1, and are initialized at α :

$$\frac{\partial L}{\partial w_1} = \alpha^{N-1} \frac{\partial L}{\partial w_N}$$

- Depending on the value of α , the gradient with respect to w_1 will be huge or very small.
- Similar effects happen for more complex deep networks (even worst if non-linearities have ~0 gradients).

Vanishing/exploding gradients: solutions

- Use ReLU (non-saturating)
- Use skip-connections



• Use batch-normalization

Batch normalization

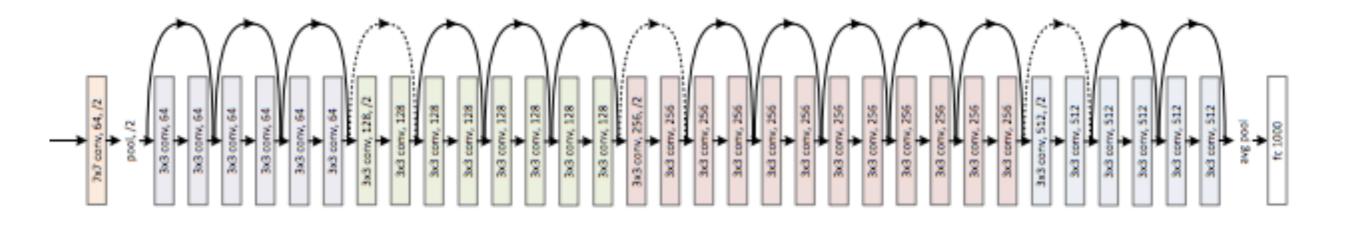
- Additional layer to avoid vanishing or exploding signal.
- Idea: normalize the data everywhere in the network using estimates of the mean/variance

$$BN_{\alpha,\beta}(x,\mu,\sigma) = \alpha \frac{x-\mu}{\sigma} + \beta$$

- α, β are learned, μ, σ are estimated over a mini-batch.
- Batch-norm layers are typically placed just before non-linearities

Typical modern network: Resnet

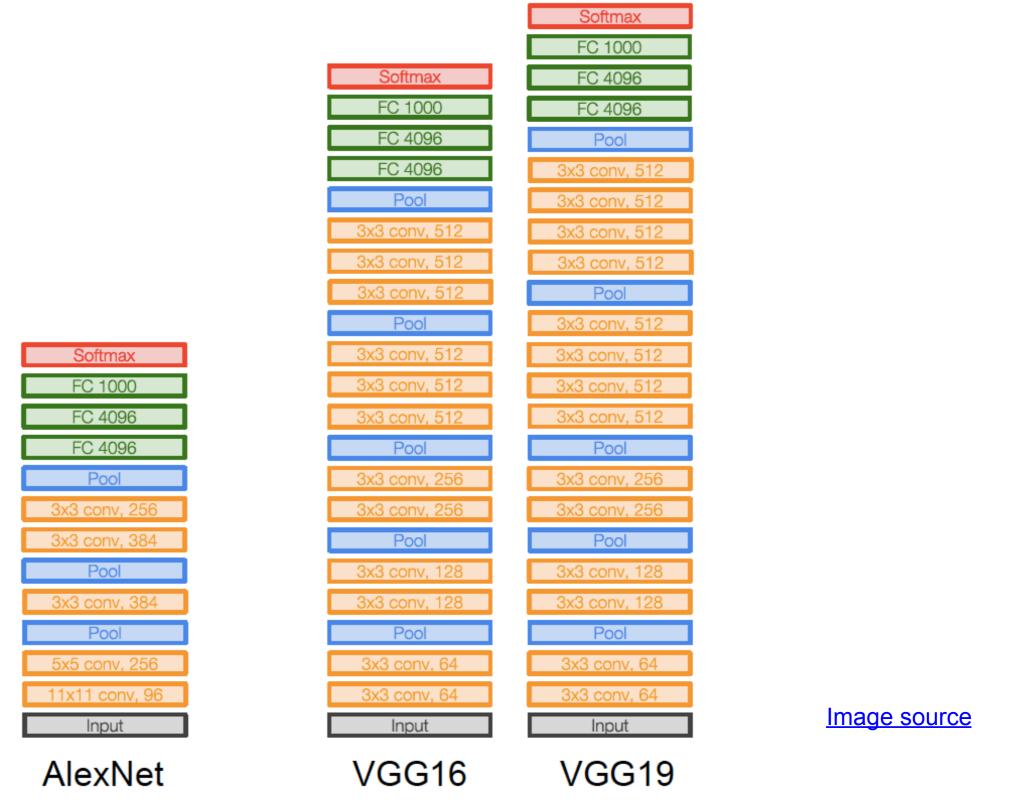
Identical layers are repeated many times



- 3x3 convolution kernels + BN + ReLUs.
- Skip connections.
- Only one fully connected layer at the end.

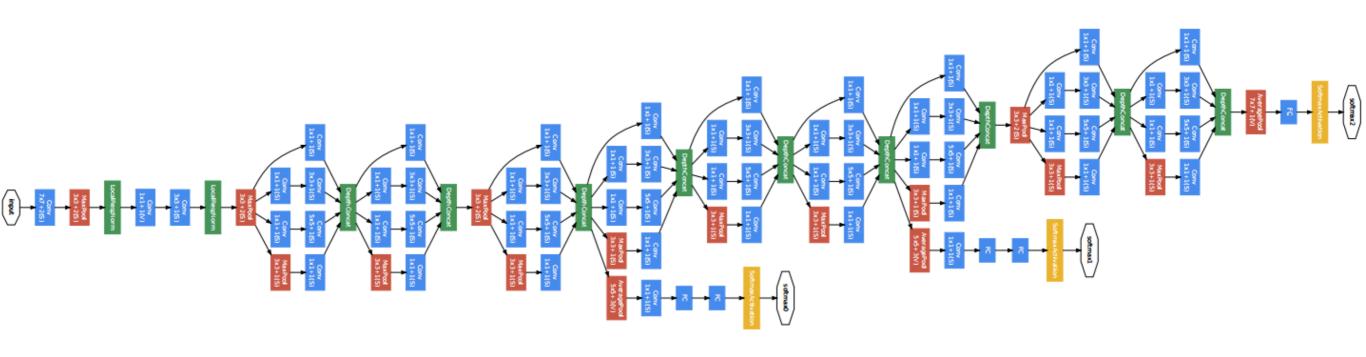
K. He, X. Zhang, S. Ren, and J. Sun, <u>Deep Residual Learning for Image</u> <u>Recognition</u>, CVPR 2016 (Best Paper)

AlexNet and VGGNet



K. Simonyan and A. Zisserman, <u>Very Deep Convolutional Networks for Large-Scale</u> <u>Image Recognition</u>, ICLR 2015

GoogLeNet



C. Szegedy et al., Going deeper with convolutions, CVPR 2015

AlexNet, 8 layers (ILSVRC 2012) VGG, 19 layers (ILSVRC 2014)

ResNet, 152 layers (ILSVRC 2015) K. He, X. Zhang, S. Ren, and J. Sun, <u>Deep Residual Learning for Image</u> <u>Recognition</u>, CVPR 2016 (Best Paper)

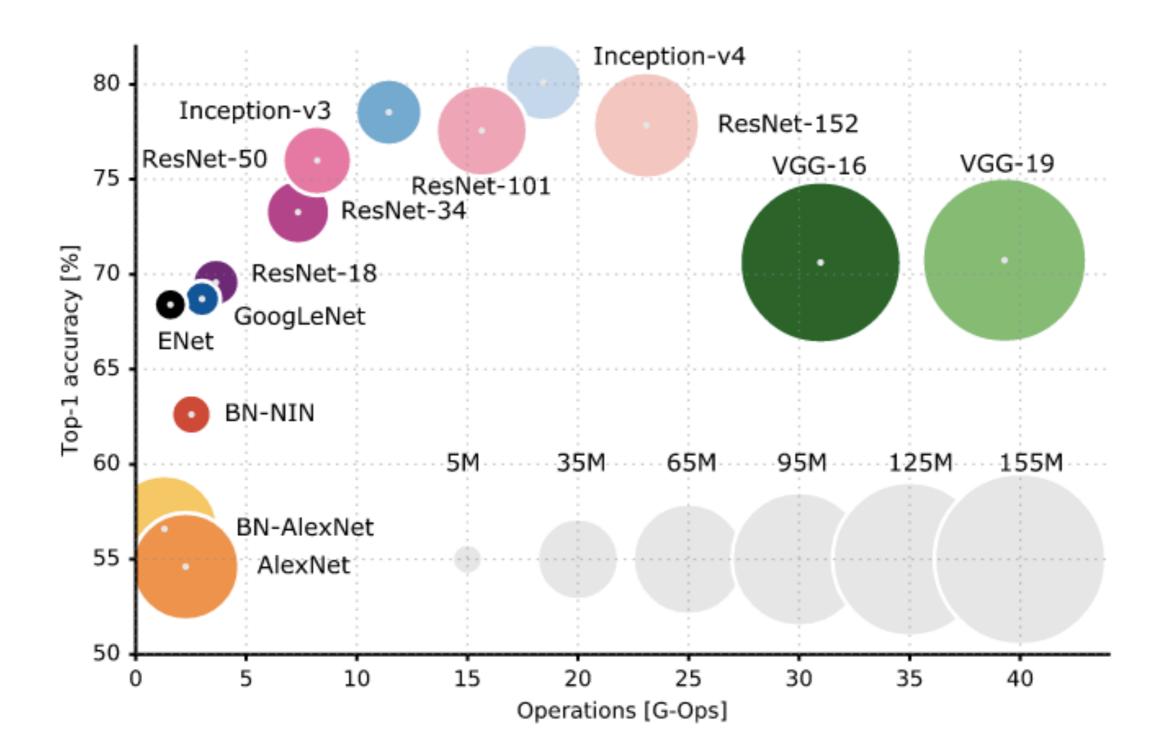
ImageNet Challenge

GENET

- ~14 million labeled images, 20k classes
- Images gathered from Internet
- Human labels via Amazon MTurk
- ImageNet Large-Scale Visual Recognition Challenge (ILSVRC): 1.2 million training images, 1000 classes
- Starting with 2015, image classification is not part of ILSVRC challenge (but people continue to benchmark on the data)

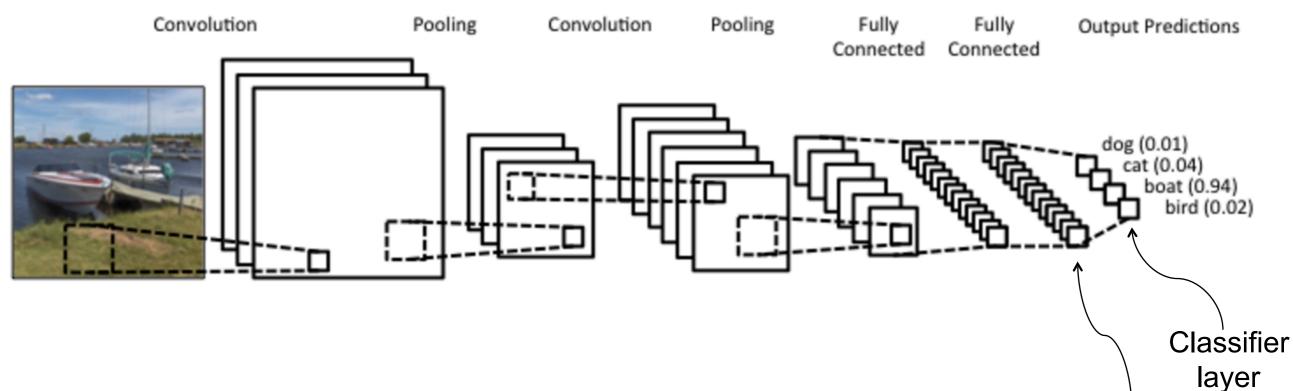
www.image-net.org/challenges/LSVRC/

Comparing architectures



https://culurciello.github.io/tech/2016/06/04/nets.html

How to use a trained network for a new task?



FC

vector

- Take the vector of activations from one of the fully connected (FC) layers and treat it as an offthe-shelf feature
- Train a new classifier layer on top of the FC layer
- Fine-tune the whole network.

More general pre-training than ImageNet?

• Goal: learn generic features, that can be useful for other tasks.

 Idea of "self supervised" learning: find auxiliary task which allows to learn useful features

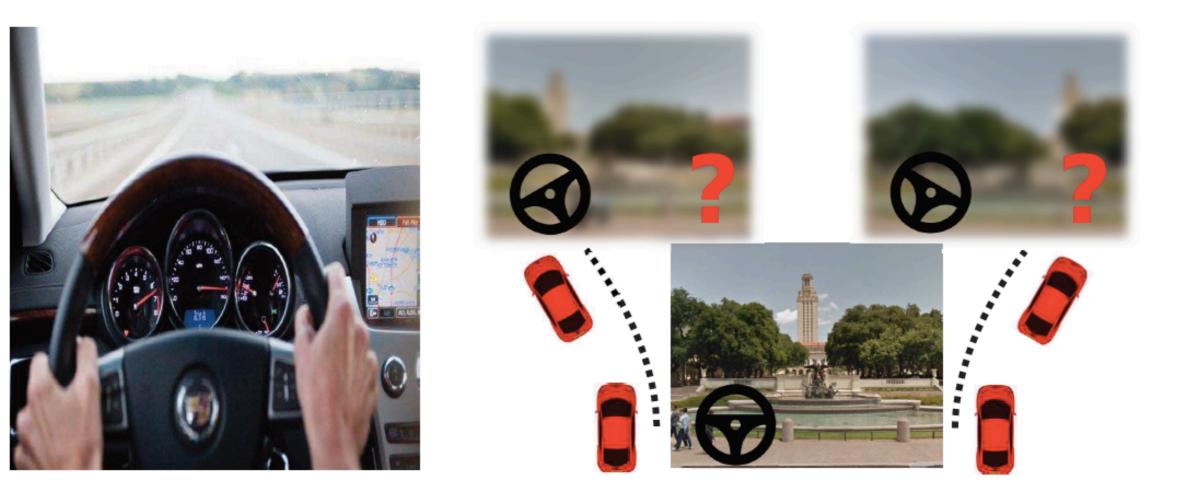
Puzzle solving

Example: Question 1: Question 2: Question 2: Question 2: Question 2: Question 2: Question 2: Question 2:

H BIN

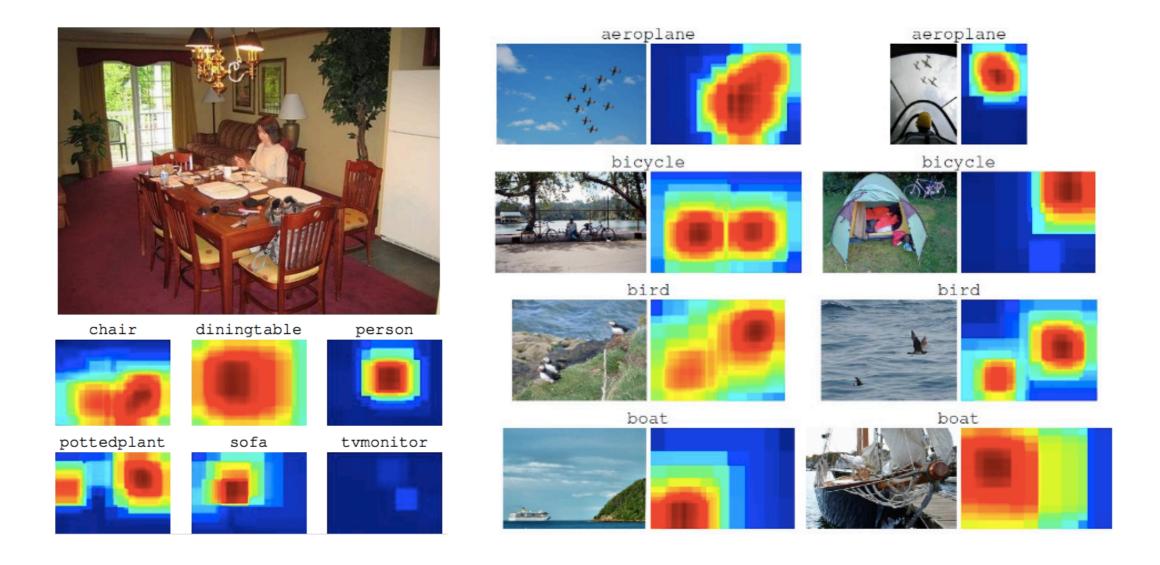
Image completion

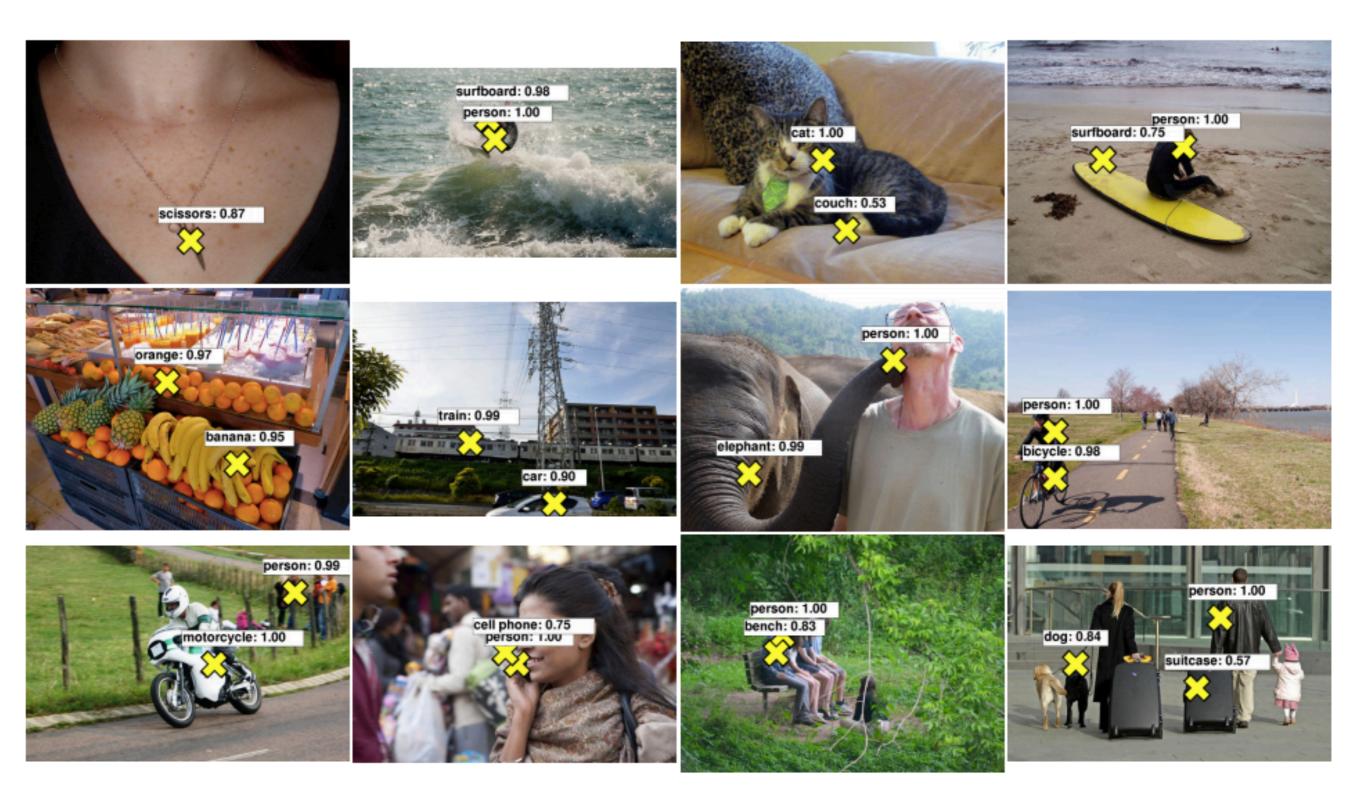
Predicting the future



Free localization from classification

Apply densely a classification network and look at the results:

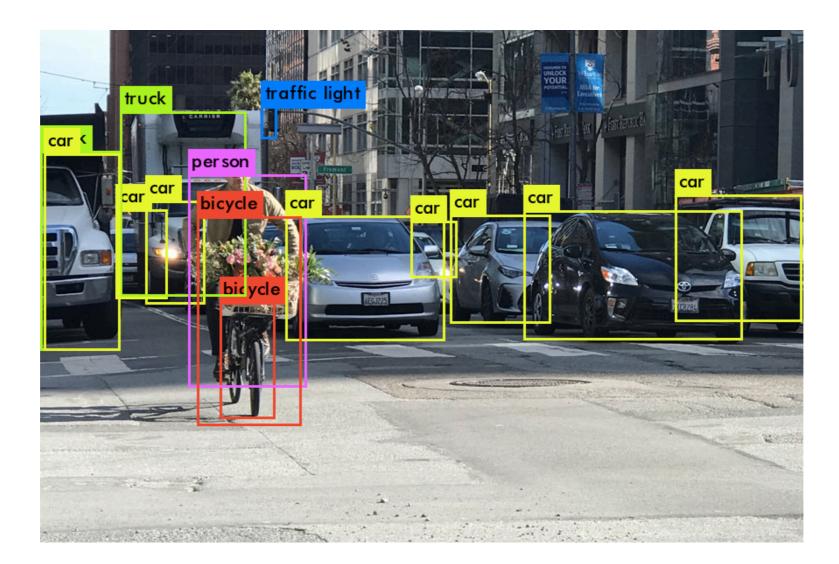




Neural networks for object detection

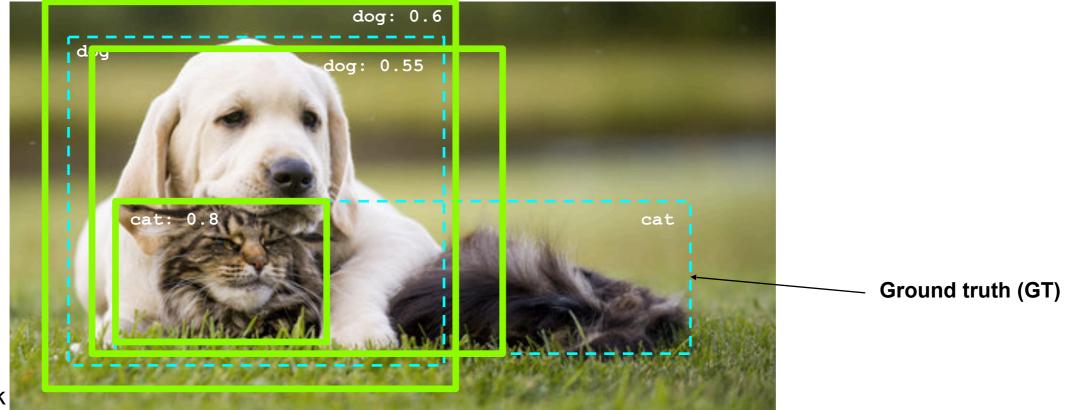
What are the challenges of object detection?

- Images may contain more than one class, multiple instances from the same class
- Bounding box localization
- Evaluation



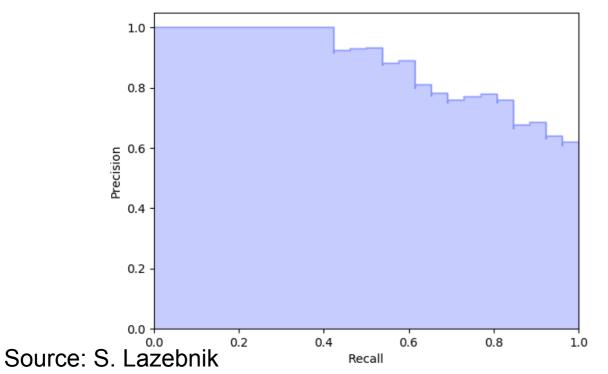
Object detection evaluation

- At test time, predict bounding boxes, class labels, and confidence scores
- For each detection, determine whether it is a true or false positive
 - PASCAL criterion: Area(GT ∩ Det) / Area(GT ∪ Det) > 0.5
 - For multiple detections of the same ground truth box, only one considered a true positive



Object detection evaluation

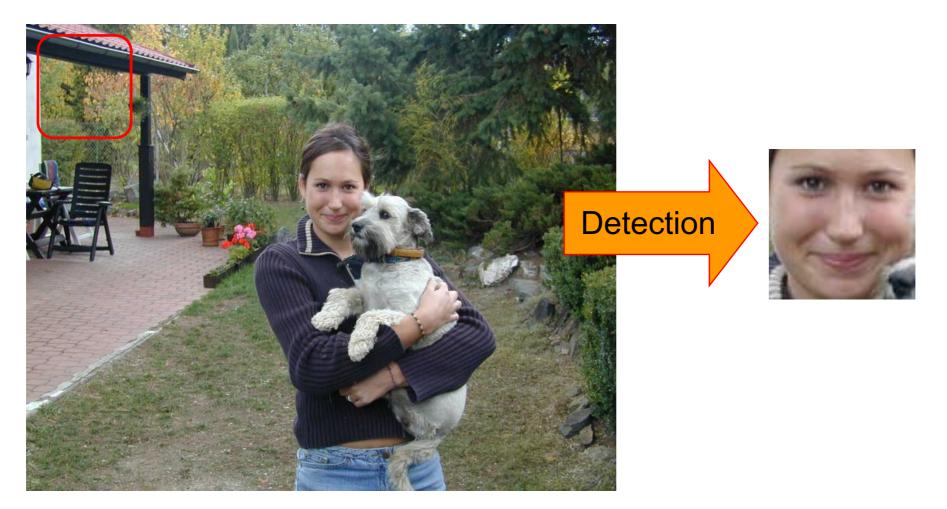
- At test time, predict bounding boxes, class labels, and confidence scores
- For each detection, determine whether it is a true or false positive
- For each class, plot Recall-Precision curve and compute Average Precision (area under the curve)
- Take mean of AP over classes to get mAP



Precision: true positive detections / total detections Recall: true positive detections /

total positive test instances

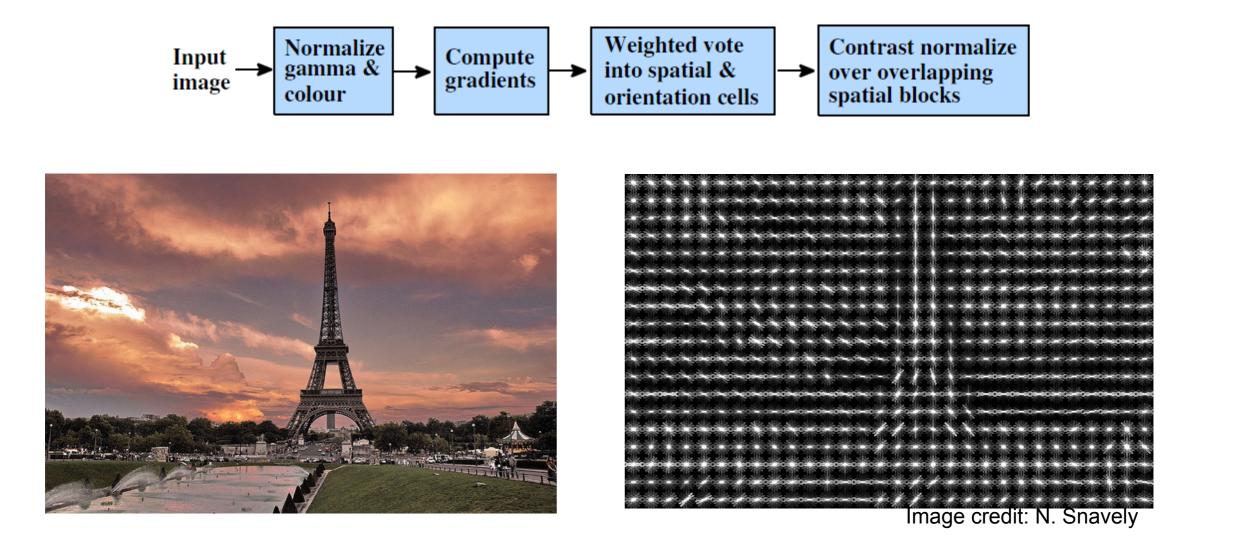
Simple approach: Sliding window detection



- Slide a window across the image and evaluate a detection model at each location
 - Thousands of windows to evaluate: efficiency and low false positive rates are essential
 - Difficult to extend to a large range of scales, aspect ratios

Histograms of oriented gradients (HOG)

 Partition image into blocks and compute histogram of gradient orientations in each block



N. Dalal and B. Triggs, <u>Histograms of Oriented Gradients for Human Detection</u>, CVPR 2005

Pedestrian detection with HOG

Train a pedestrian template using a linear support vector machine

positive training examples

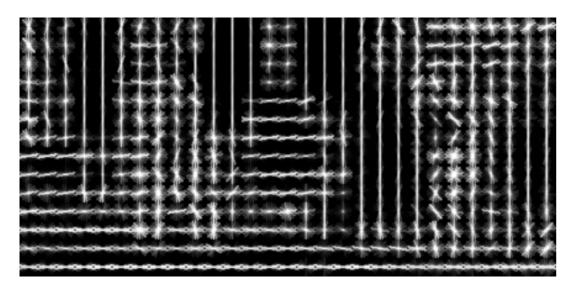
negative training examples

N. Dalal and B. Triggs, <u>Histograms of Oriented Gradients for Human Detection</u>, CVPR 2005

Pedestrian detection with HOG

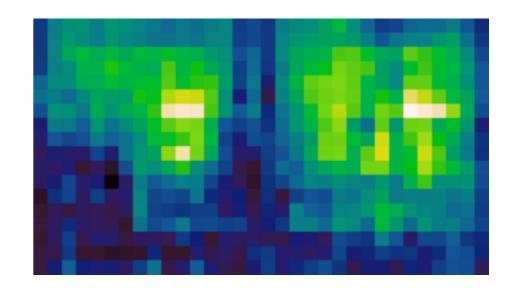
- Train a pedestrian template using a linear support vector machine
- At test time, convolve feature map with template
- Find local maxima of response
- For multi-scale detection, repeat over multiple levels of a HOG *pyramid*

HOG feature map



Template

Detector response map



N. Dalal and B. Triggs, <u>Histograms of Oriented Gradients for Human Detection</u>, CVPR 2005

Example detections

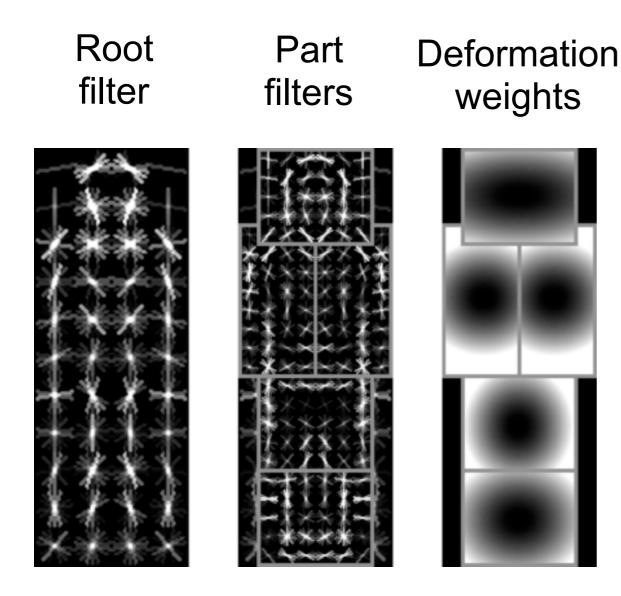
[Dalal and Triggs, CVPR 2005]

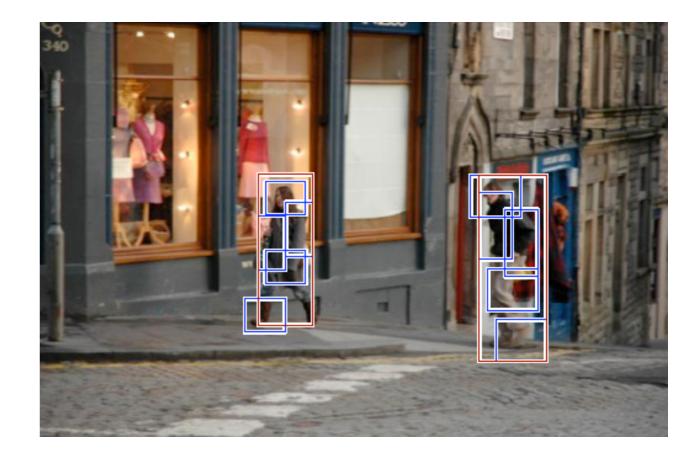
- Single rigid template usually not enough to represent a category
 - Many objects (e.g. humans) are articulated, or have parts that can vary in configuration

 Many object categories look very different from different viewpoints, or from instance to instance

Source: S. Lazebnik

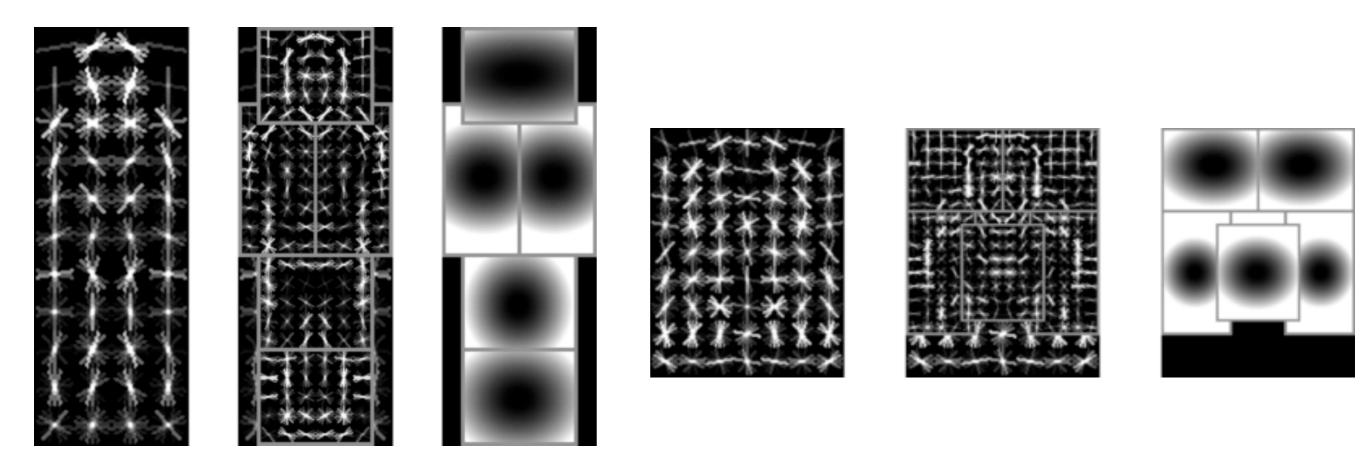
Slide by N. Snavely





P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, <u>Object Detection with</u> <u>Discriminatively Trained Part Based Models</u>, PAMI 32(9), 2010

Multiple components

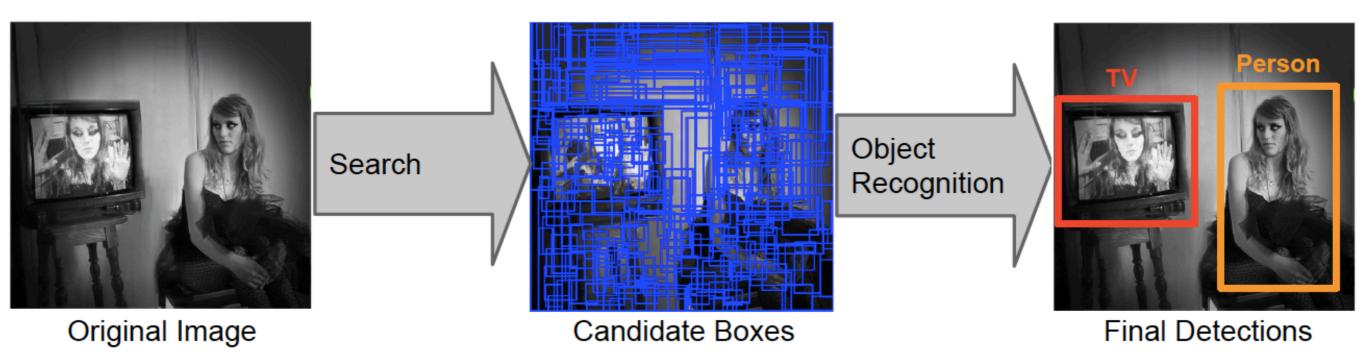


P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, <u>Object Detection with</u> <u>Discriminatively Trained Part Based Models</u>, PAMI 32(9), 2010



P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, <u>Object Detection with</u> <u>Discriminatively Trained Part Based Models</u>, PAMI 32(9), 2010

Conceptual approach: Proposal-driven detection



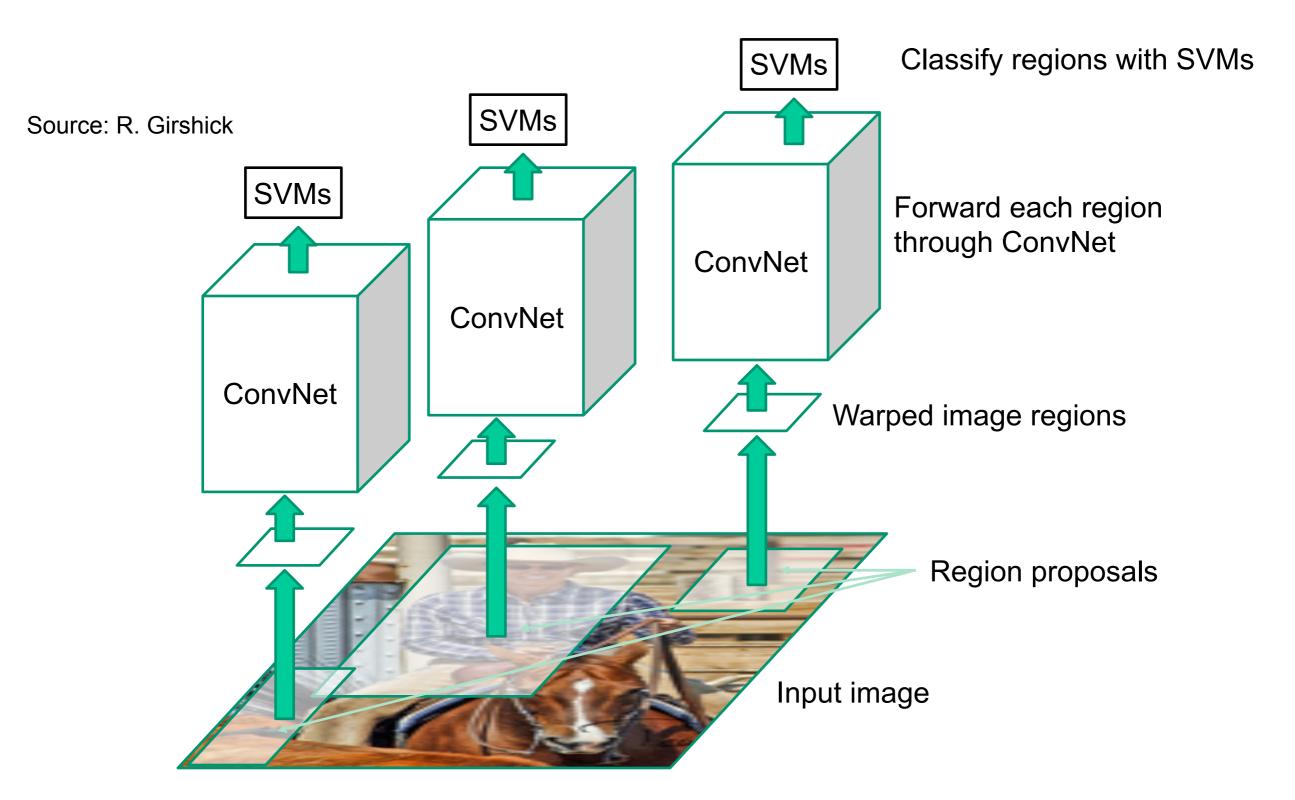
- Generate and evaluate a few hundred region proposals
 - Proposal mechanism can take advantage of low-level *perceptual* organization cues
 - Proposal mechanism can be category-specific or categoryindependent, hand-crafted or trained
 - Classifier can be slower but more powerful

Selective search for detection

 Use hierarchical segmentation: start with small superpixels and merge based on diverse cues

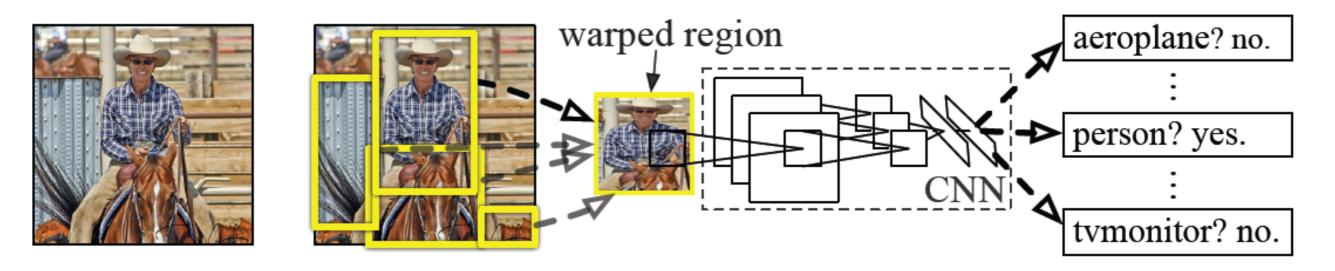
J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders, <u>Selective Search for Object</u> <u>Recognition</u>, IJCV 2013

R-CNN: Region proposals + CNN features



R. Girshick, J. Donahue, T. Darrell, and J. Malik, <u>Rich Feature Hierarchies for Accurate Object Detection and Semantic</u> <u>Segmentation</u>, CVPR 2014.

R-CNN details

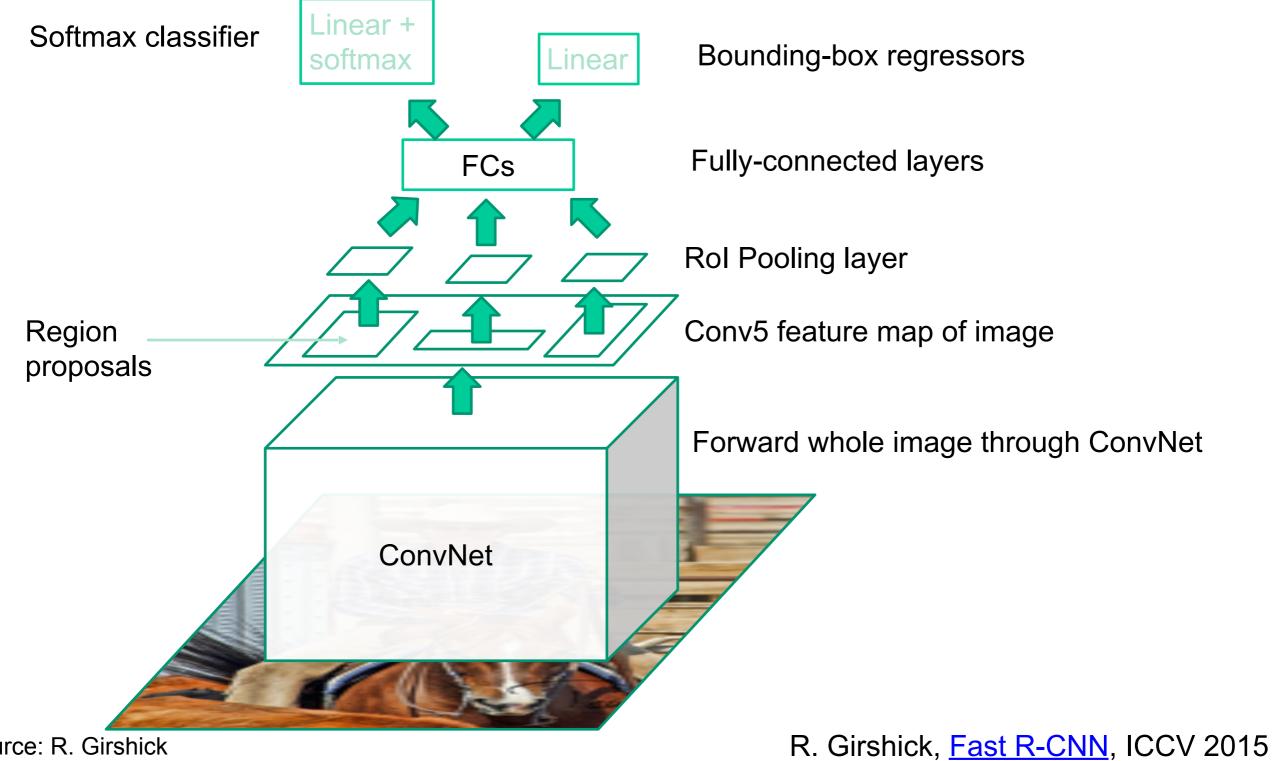


- **Regions**: ~2000 Selective Search proposals
- Network: AlexNet pre-trained on ImageNet (1000 classes), fine-tuned on PASCAL (21 classes)
- **Final detector**: warp proposal regions, extract fc7 network activations (4096 dimensions), classify with linear SVM
- Bounding box regression to refine box locations
- Performance: mAP of 53.7% on PASCAL 2010 (vs. 35.1% for Selective Search and 33.4% for Deformable Part Models)

R-CNN pros and cons

- Pros
 - Accurate!
 - Any deep architecture can immediately be "plugged in"
- Cons
 - Not a single end-to-end system
 - Fine-tune network with softmax classifier (log loss)
 - Train post-hoc linear SVMs (hinge loss)
 - Train post-hoc bounding-box regressions (least squares)
 - Training is slow (84h), takes a lot of disk space
 - 2000 CNN passes per image
 - Inference (detection) is slow (47s / image with VGG16)

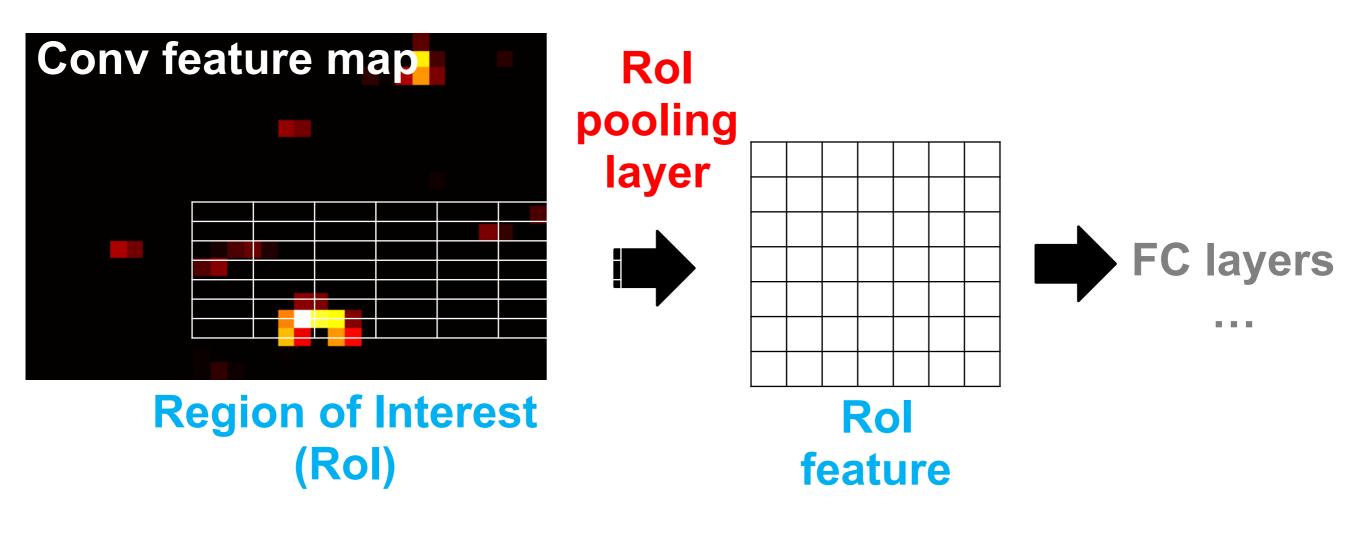
Fast R-CNN



Source: R. Girshick

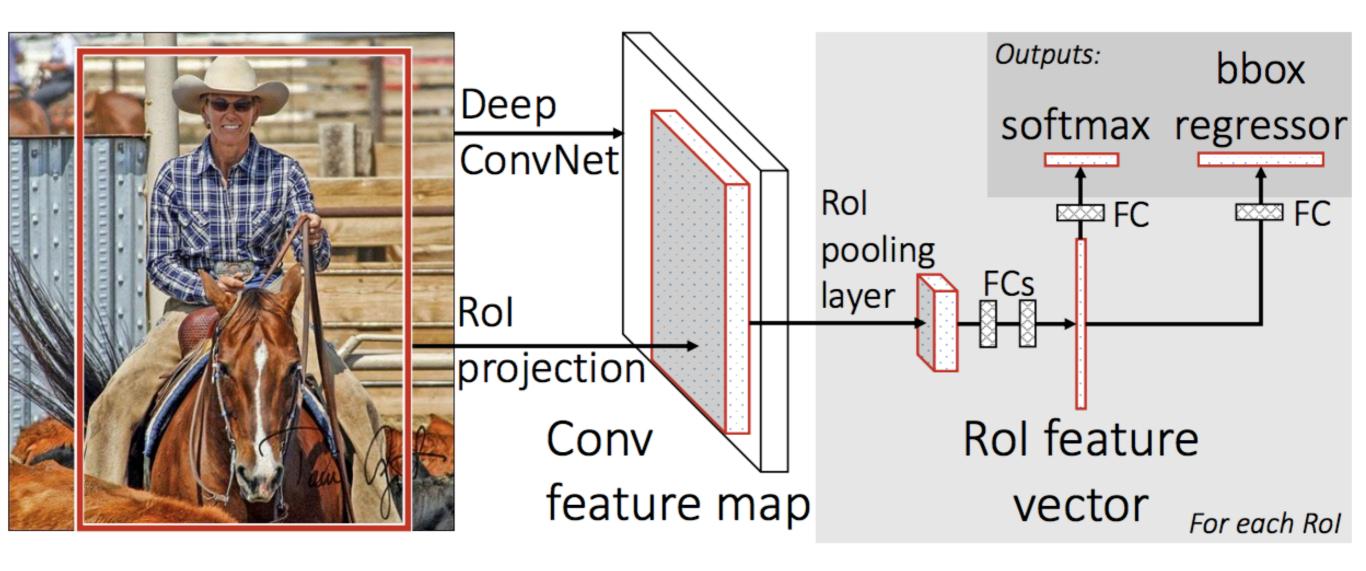
Rol pooling

- "Crop and resample" a fixed-size feature representing a region of interest out of the outputs of the last conv layer
 - Use nearest-neighbor interpolation of coordinates, max pooling



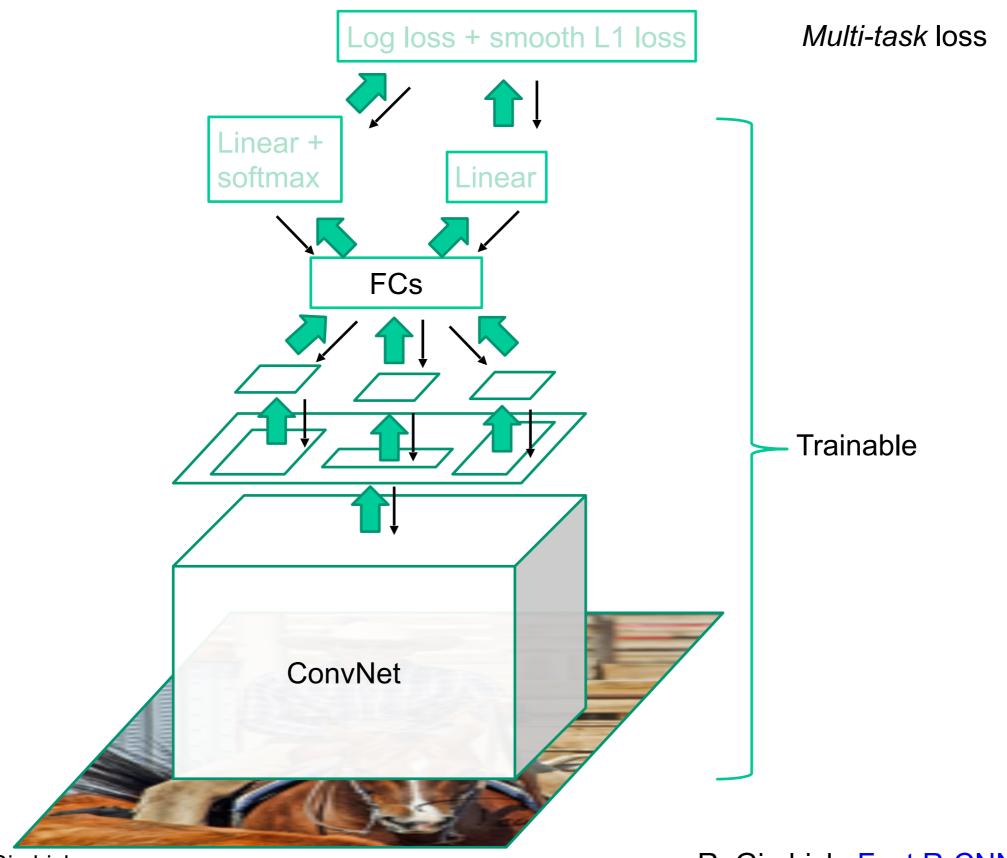
Prediction

 For each Rol, network predicts probabilities for C+1 classes (class 0 is background) and four bounding box offsets for C classes



R. Girshick, Fast R-CNN, ICCV 2015

Fast R-CNN training



Source: R. Girshick

R. Girshick, Fast R-CNN, ICCV 2015

Multi-task loss

• Loss for ground truth class y, predicted class probabilities P(y), ground truth box b, and predicted box \hat{b} :

$$L(y, P, b, \hat{b}) = -\log P(y) + \lambda \mathbb{I}[y \ge 1] L_{\text{reg}}(b, \hat{b})$$

softmax loss regression loss

Regression loss: *smooth L1 loss* on top of log space offsets relative to proposal

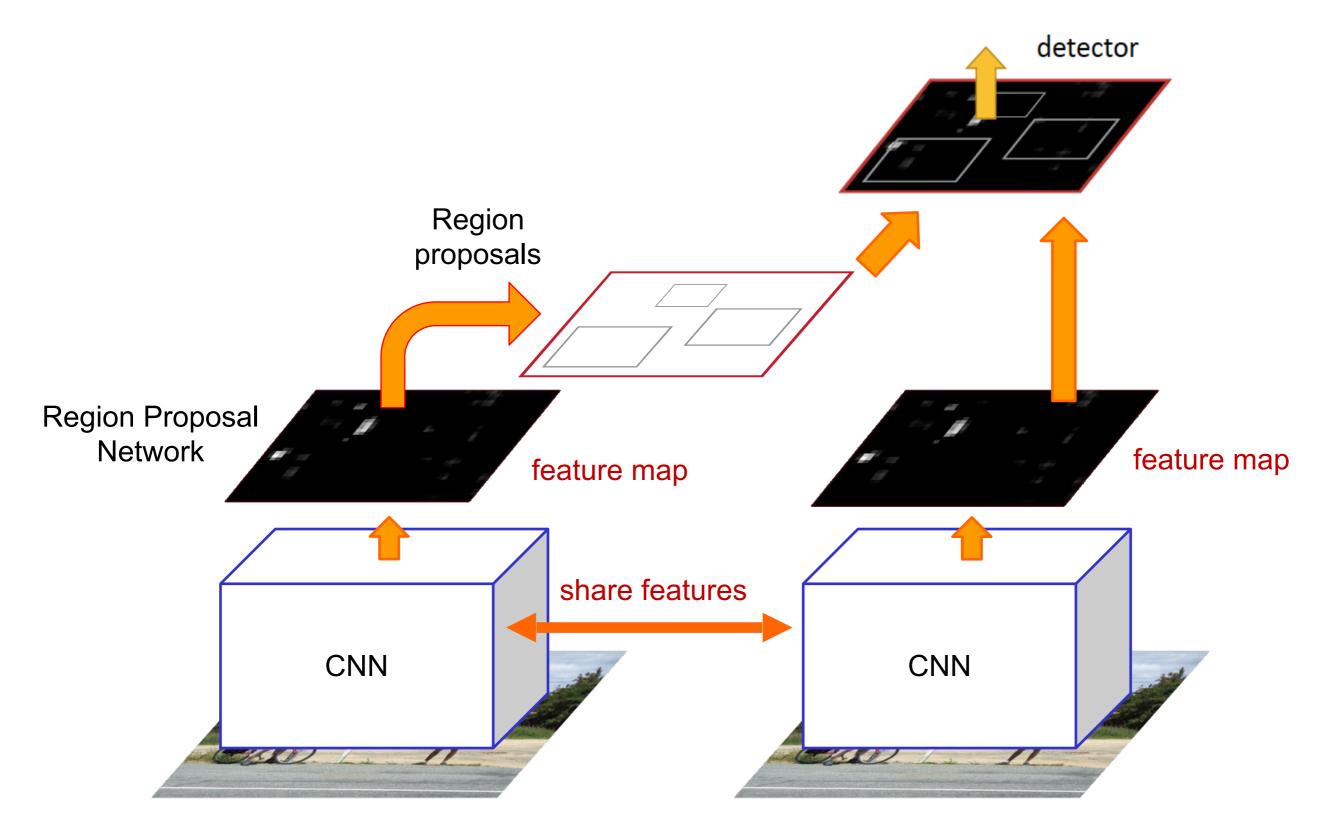
$$L_{\operatorname{reg}}(b, \hat{b}) = \sum_{\substack{x, y, \\ x \neq y \\ y = 1 \\ y$$

Fast R-CNN results

	Fast R-CNN	R-CNN
Train time (h)	9.5	84
- Speedup	8.8x	1x
Test time / image	0.32s	47.0s
Test speedup	146x	1x
mAP	66.9%	66.0%

Timings exclude object proposal time, which is equal for all methods. All methods use VGG16 from Simonyan and Zisserman.

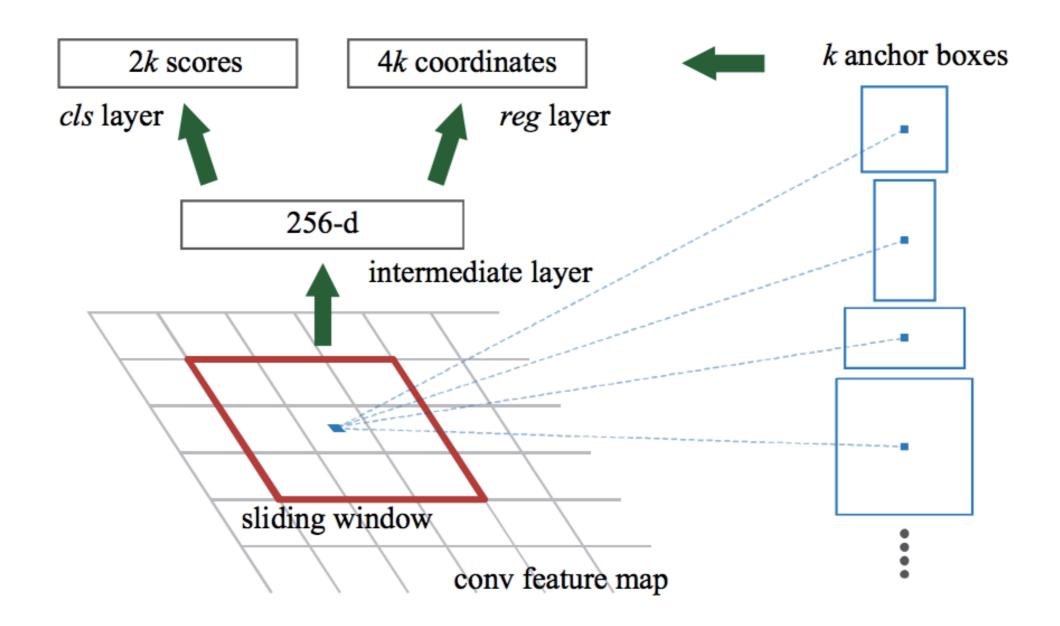
Faster R-CNN



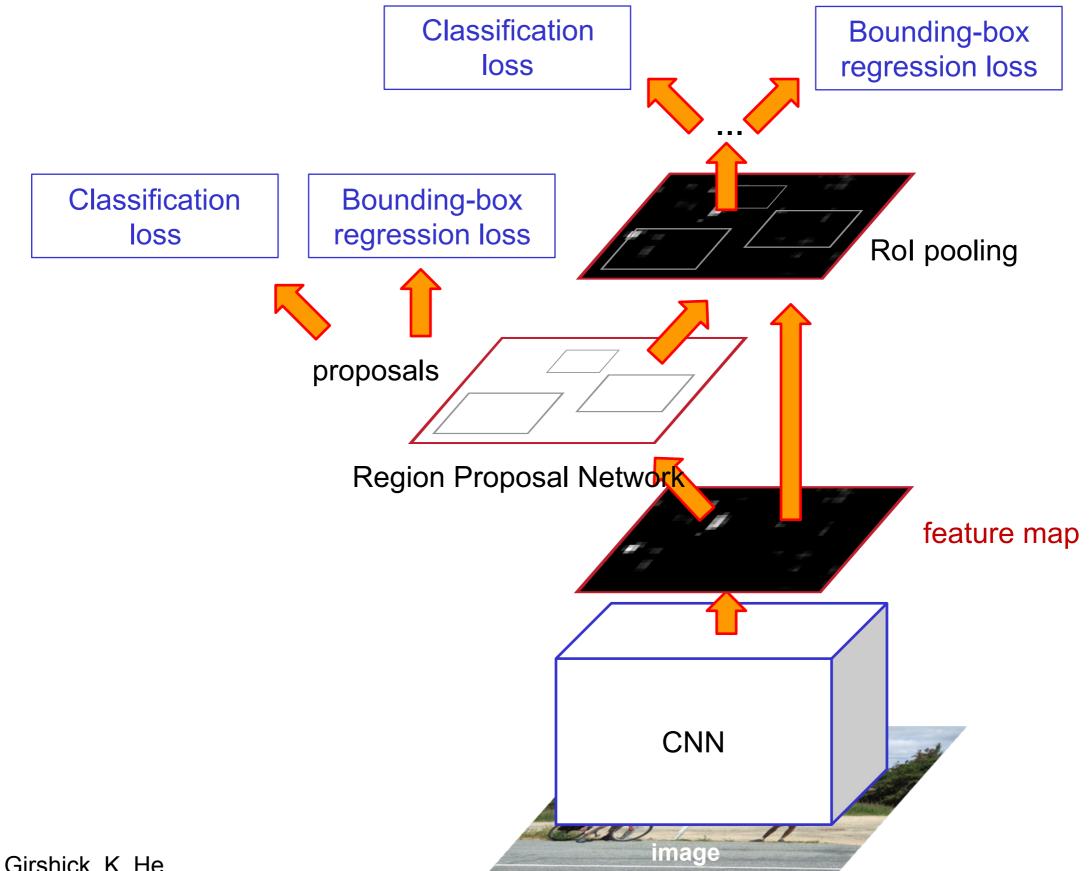
S. Ren, K. He, R. Girshick, and J. Sun, <u>Faster R-CNN: Towards Real-Time Object Detection with</u> <u>Region Proposal Networks</u>, NIPS 2015

Region proposal network (RPN)

- Slide a small window (3x3) over the conv5 layer
 - Predict object/no object
 - Regress bounding box coordinates with reference to *anchors* (3 scales x 3 aspect ratios)



One network, four losses



Source: R. Girshick, K. He

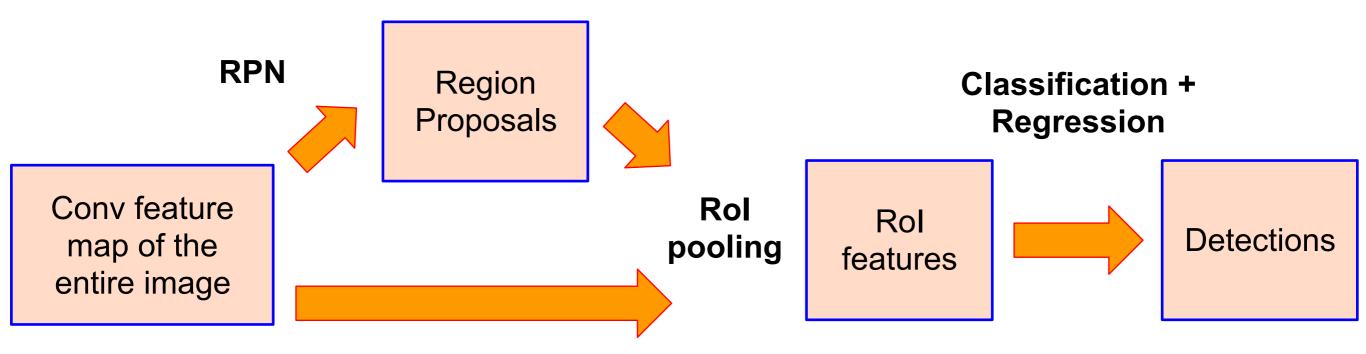
Faster R-CNN results

system	time	07 data	07+12 data
R-CNN	~50s	66.0	-
Fast R-CNN	~2s	66.9	70.0
Faster R-CNN	198ms	69.9	73.2

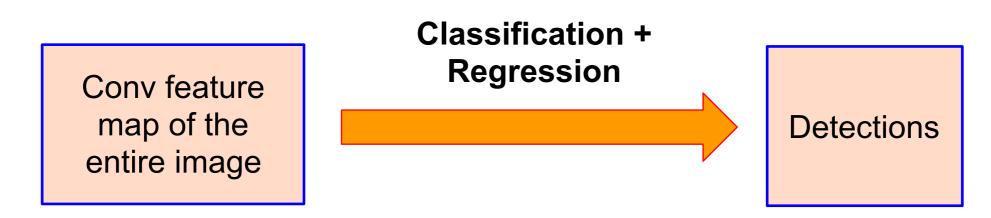
detection mAP on PASCAL VOC 2007, with VGG-16 pre-trained on ImageNet

Streamlined detection architectures

 The Faster R-CNN pipeline separates proposal generation and region classification:

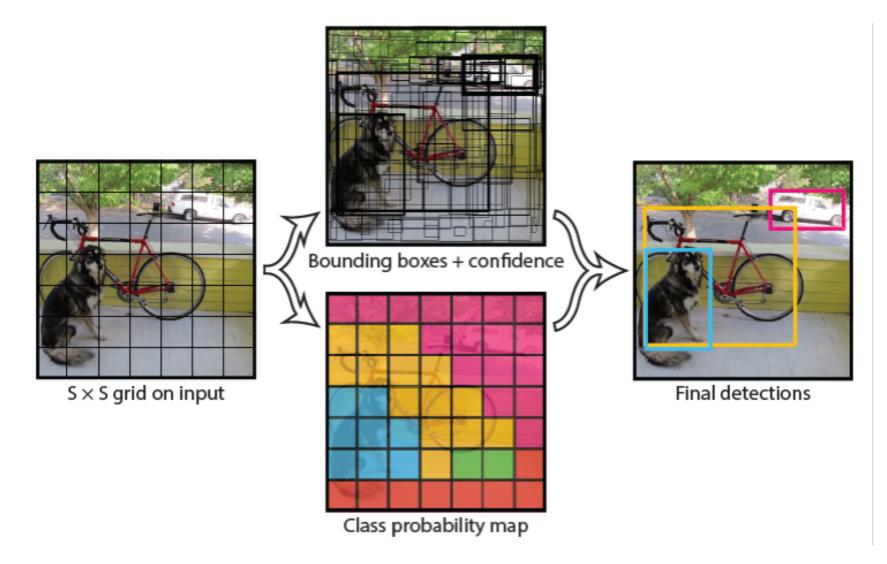


• Is it possible do detection in one shot?



YOLO

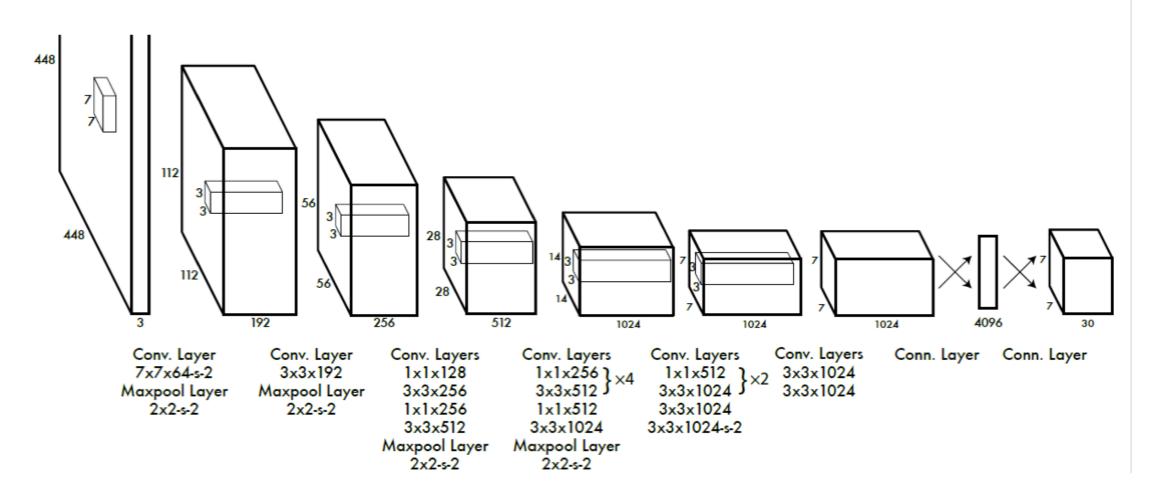
 Divide the image into a coarse grid and directly predict class label and a few candidate boxes for each grid cell



J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, <u>You Only Look Once: Unified, Real-Time</u> <u>Object Detection</u>, CVPR 2016

YOLO

- 1. Take conv feature maps at 7x7 resolution
- Add two FC layers to predict, at each location,
 a score for each class and 2 bboxes w/ confidences
 - For PASCAL, output is $7x7x30(30 = 20 + 2^{*}(4+1))$



J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, <u>You Only Look Once: Unified, Real-Time</u> Source: S. Lazebnik <u>Object Detection</u>, CVPR 2016

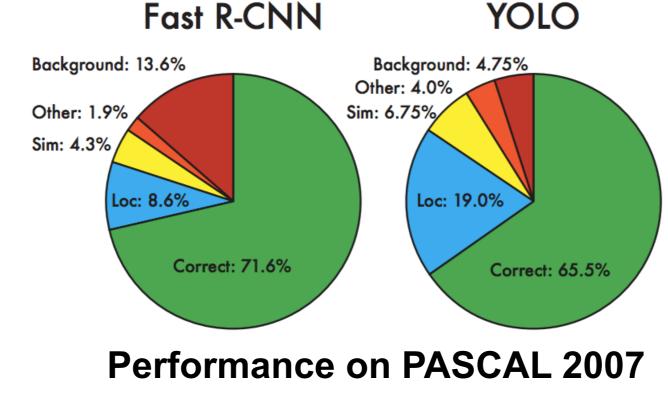
YOLO

• Objective function:

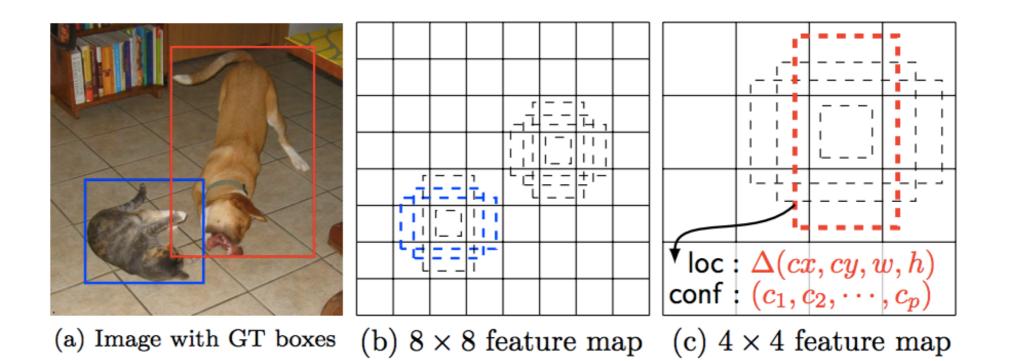
$$\begin{split} \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\ &+ \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \\ &+ \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \\ &+ \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2 \\ &+ \sum_{i=0}^{S^2} \mathbb{1}_{ij}^{\text{obj}} \sum_{c \in \text{classes}} \left(p_i(c) - \hat{p}_i(c) \right)^2 \end{split}$$
 Class prediction

YOLO: Results

- Each grid cell predicts only two boxes and can only have one class – this limits the number of nearby objects that can be predicted
- Localization accuracy suffers compared to Fast(er) R-CNN due to coarser features, errors on small boxes
- 7x speedup over Faster R-CNN (45-155 FPS vs. 7-18 FPS)



SSD

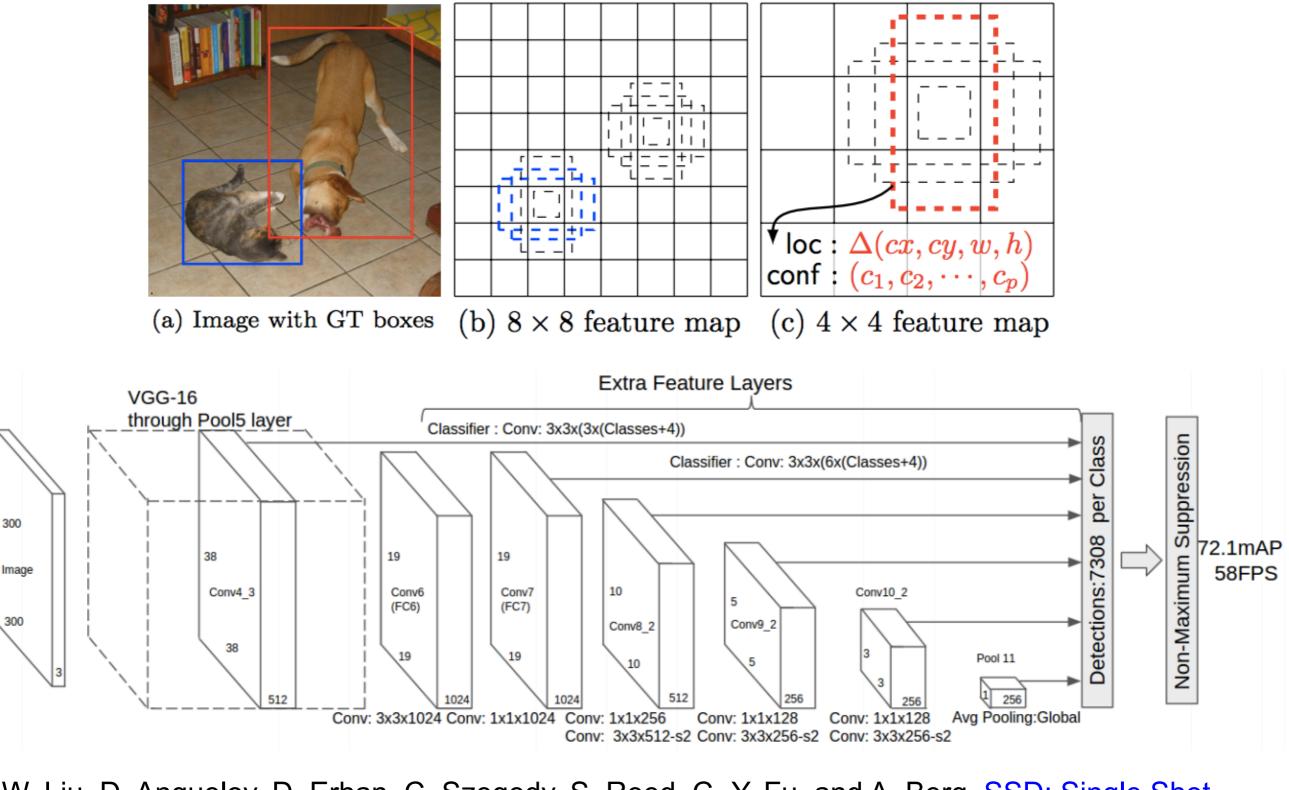


- Similarly to YOLO, predict bounding boxes directly from conv maps
- Unlike YOLO, do not use FC layers and predict different size boxes from conv maps at different resolutions
- Similarly to RPN, use anchors

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. Berg, <u>SSD: Single Shot</u> <u>MultiBox Detector</u>, ECCV 2016.

SSD

SSD



W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. Berg, <u>SSD: Single Shot</u> <u>MultiBox Detector</u>, ECCV 2016.

Object detection overview

- Different choices for "base network":
 VGG, ResNet...
- Object detection architecture:
 - Region-based: R-CNN, Fast R-CNN, Faster R-CNN
 Single shot: YOLO, SSD
- Faster R-CNN is slower but more accurate.
- YOLO/SSD are faster but less accurate.