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Outline

• Training neural networks 

• Object detection with CNNs



Parametric supervised learning

• Training examples  

• A function class  
• A loss function  

• Goal: minimize the empirical risk 

• Hope that this “generalizes”: if  is a r.v., we would like to 
minimize

(x1, y1), …, (xn, yn) ∈ 𝒳 × 𝒴
ℱ = {fθ : 𝒳 → 𝒴 | θ ∈ ℝd}

ℓ : 𝒴 × 𝒴 → ℝ

(X, Y )

L̂(θ) =
1
n

n

∑
i=1

ℓ( fθ(xi), yi)

L(θ) = 𝔼[ℓ( fθ(X), Y )]



Neural networks

A neural network architecture describes a particular family of 
functions: . 

The parameters  are the network’s weights.

fθ : 𝒳 → 𝒴

θ ∈ ℝd



Feedforward NN (MLP)

A feedforward NN is a composition of linear an non-linear functions, 
for example: 

where , , and  is a non-linear map 
acting coordinate-wise.

Wi ∈ ℝdi×di−1 θ = (Wh, …, W1) ρ

fθ(x) : ℝd0 → ℝdh, fθ(x) = WhρWh−1ρ…W2ρW1x,



Non-linearity

• The nonlinearity  should be (almost everywhere) 
differentiable.

ρ

Sigmoid: Rectified linear unit (ReLU): ρ(t) =
1

1 + e−t
ρ(t) = max(0, t)



Neural networks for images

image Fully connected layer
Source: S. Lazebnik
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Neural networks for images

Convolutional layer
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Convolution as feature extraction

Input Feature Map
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Input Image
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Spatial pooling
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Key operations in a CNN

Source: R. Fergus, Y. LeCun



Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Feature maps

Key operations in a CNN

Source: R. Fergus, Y. LeCun

Rectified Linear Unit (ReLU)



Input Image
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Key operations in a CNN

Source: R. Fergus, Y. LeCun



Key operations in a CNN

Softmax layer:

Source: S. Lazebnik

σ(z)i =
ezi

∑K
j=1 ez

j



Loss functions
The objective to minimize is of the form  

Examples for : 
• Regression:  

– Quadratic loss: 

• Classification: 
– Cross-entropy: 

Classification is usually better! (easier problem)

ℓ

ℓ(y, ̂y) = − ∑
i

yi log( ̂yi), y ∈ {0,1}d, ̂y ∈ [0,1]d .

ℓ(y, ̂y) = ∥y − ̂y∥2
2, y, ̂y ∈ ℝd

L(θ) =
n

∑
i=1

ℓ( fθ(xi), yi)



Training of multi-layer networks
• Find network weights to minimize the error between true 

and estimated labels of training examples: 

• Update weights by gradient descent:

w1
w2

L(θ) =
1
n

n

∑
i=1

ℓ( fθ(xi), yi)

θt+1 = θt − γt
1
n

n

∑
i=1

∂
∂θ

ℓ( fθ(xi), yi)



Gradient descent

• Need to choose the learning rate policy  
• Can get stuck in a local minima (  is not convex) 
• Each step can be expensive to compute if the dataset is large

γt
L(θ)

θt+1 = θt − γt
1
n

n

∑
i=1

∂
∂θ

ℓ( fθ(xi), yi)



Stochastic gradient descent
• Idea: instead of computing the gradient, compute an 

approximation 

Note that in expectation

θt+1 = θt − γt
1
n

n

∑
i=1

∂
∂θ

ℓ( fθ(xi), yi)

θt+1 = θt − γt
∂
∂θ

ℓ( fθ(xit), yit)

𝔼(θt+1 |θt) = θt+1 = θt − γt
1
n

n

∑
i=1

∂
∂θ

ℓ( fθ(xi), yi)



Batch SGD
• It’s faster to compute several gradients in parallel 
• Some variance is good, too much can be bad  

 compute gradient estimates on a batch instead of a single 
sample. 

• In practice, using batches as large as possible so that the 
network fits in the GPU memory

→

θt+1 = θt − γt
1
K

K

∑
k=1

∂
∂θ

ℓ( fθ(xik,t), yik,t)



Beyond SGD
• Many other algorithms: see https://ruder.io/optimizing-gradient-

descent/ 

• GD with momentum: encourage directions that are coherent: 

• Adagrad, Adadelta, RMSProp, ADAM… 

• All these optimizers are coded in standard deep learning 
libraries

vt = ηvt−1 + γ∇θt

θt+1 = θt − vt

https://ruder.io/optimizing-gradient-descent/
https://ruder.io/optimizing-gradient-descent/


Backpropagation
• AKA “reverse-mode automatic differentiation” (“chain rule”) 

– not finite differences 
– not symbolic differentiation 

Simple example: if , then compute y = fh( fh−1(…f1(w0))), wi = fi(wi−1)

dy
dwi

=
dy

dwi+1

dwi+1

dwi

Other example:  
with 

f(x, y, z) = (x + y)z,
x = − 2,y = 5,z = − 4

Source: http://cs231n.github.io/optimization-2/



Initialization

• Since loss is not convex, initialization is really important! 
• If two neurons on the same layer are initialized with the 

same weight, they will stay the same. 
• For ReLU activations, PyTorch uses “Kaiming Uniform”:

wi ∼ 𝒰 [− k, k]  where  k =
1

nin



Regularization
Several techniques for regularization (to avoid 
overfitting): 

• L2 penalization on the weights (also called weight decay) 

• Dropout: only keep a neuron active with some probability  , 
or set it to zero otherwise. 

• Early stopping 
• Data augmentation

p

L(θ) =
n

∑
i=1

ℓ( fθ(xi), yi) + λ∥θ∥2



http://playground.tensorflow.org/

Interactive Demo

http://playground.tensorflow.org/


Common problem: vanishing/exploding gradients

• If all linear layers have width 1, and are initialized at : 

• Depending on the value of , the gradient with 
respect to  will be huge or very small. 

• Similar effects happen for more complex deep 
networks (even worst if non-linearities have ~0 
gradients). 

α

α
w1



Vanishing/exploding gradients: solutions

• Use ReLU (non-saturating) 

• Use skip-connections 

• Use batch-normalization



Batch normalization

• Additional layer to avoid vanishing or exploding 
signal. 

• Idea: normalize the data everywhere in the network 
using estimates of the mean/variance 

•  are learned,  are estimated over a mini-batch. 
• Batch-norm layers are typically placed just before 

non-linearities

α, β μ, σ



Typical modern network: Resnet
• Identical layers are repeated many times 

• 3x3 convolution kernels + BN + ReLUs. 
• Skip connections. 
• Only one fully connected layer at the end.

K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image 
Recognition, CVPR 2016 (Best Paper)

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385


AlexNet and VGGNet

K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale 
Image Recognition, ICLR 2015

Image source

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture09.pdf


GoogLeNet

 C. Szegedy et al., Going deeper with convolutions, CVPR 2015

https://arxiv.org/abs/1409.4842


ResNet

K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image 
Recognition, CVPR 2016 (Best Paper)

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385


ImageNet Challenge

• ~14 million labeled images, 20k classes 

• Images gathered from Internet 

• Human labels via Amazon MTurk  

• ImageNet Large-Scale Visual Recognition 
Challenge (ILSVRC):  
1.2 million training images, 1000 classes 

• Starting with 2015, image classification is 
not part of ILSVRC challenge (but people 
continue to benchmark on the data)

www.image-net.org/challenges/LSVRC/

http://www.image-net.org/challenges/LSVRC/


Comparing architectures

https://culurciello.github.io/tech/2016/06/04/nets.html

https://culurciello.github.io/tech/2016/06/04/nets.html
https://culurciello.github.io/tech/2016/06/04/nets.html
https://culurciello.github.io/tech/2016/06/04/nets.html
https://culurciello.github.io/tech/2016/06/04/nets.html


How to use a trained network for a new task?

• Take the vector of activations from one of the 
fully connected (FC) layers and treat it as an off-
the-shelf feature 

• Train a new classifier layer on top of the FC layer 
• Fine-tune the whole network.

FC 
vector

Classifier 
layer



More general pre-training than ImageNet?

• Goal: learn generic features, that can be useful for 
other tasks. 

• Idea of “self supervised” learning: find auxiliary task 
which allows to learn useful features



Puzzle solving



Image completion



Predicting the future



Free localization from classification
• Apply densely a classification network and look at the 

results:





Neural networks for object detection



What are the challenges of object detection?

• Images may contain more than one class, multiple 
instances from the same class 

• Bounding box localization 
• Evaluation

Image sourceSource: S. Lazebnik

https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088


Object detection evaluation
• At test time, predict bounding boxes, class labels, and 

confidence scores 
• For each detection, determine whether it is a true or false 

positive 
• PASCAL criterion: Area(GT  Det) / Area(GT  Det) > 0.5 
• For multiple detections of the same ground truth  

box, only one considered a true positive

∩ ∪

cat

dog

cat: 0.8

dog: 0.6

dog: 0.55

Ground truth (GT)

Source: S. Lazebnik



Object detection evaluation
• At test time, predict bounding boxes, class labels, 

and confidence scores 
• For each detection, determine whether it is a true or 

false positive 
• For each class, plot Recall-Precision curve and 

compute Average Precision (area under the curve) 
• Take mean of  AP over classes to get mAP

Precision:  
true positive detections /  
total detections 
Recall: 
true positive detections /  
total positive test instances

Source: S. Lazebnik



Simple approach: Sliding window detection

• Slide a window across the image and evaluate a detection 
model at each location 

• Thousands of windows to evaluate: efficiency and low false positive rates 
are essential 

• Difficult to extend to a large range of scales, aspect ratios

Detection



Histograms of oriented gradients (HOG)
• Partition image into blocks and compute histogram of 

gradient orientations in each block

Image credit: N. Snavely

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 
2005

Source: S. Lazebnik

http://lear.inrialpes.fr/pubs/2005/DT05


Pedestrian detection with HOG
• Train a pedestrian template using a linear support vector 

machine

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 
2005

positive training 
examples

negative training 
examples

Source: S. Lazebnik

http://lear.inrialpes.fr/pubs/2005/DT05


Pedestrian detection with HOG
• Train a pedestrian template using a linear support vector 

machine 
• At test time, convolve feature map with template 
• Find local maxima of response 
• For multi-scale detection, repeat over multiple levels of a 

HOG pyramid

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 
2005

TemplateHOG feature map Detector response map

Source: S. Lazebnik

http://lear.inrialpes.fr/pubs/2005/DT05


Example detections

[Dalal and Triggs, CVPR 2005]Source: S. Lazebnik



Discriminative part-based models
• Single rigid template usually not enough to represent 

a category 
– Many objects (e.g. humans) are articulated, or have 

parts that can vary in configuration  

– Many object categories look very different from 
different viewpoints, or from instance to instance

Slide by N. SnavelySource: S. Lazebnik



Discriminative part-based models

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection with 
Discriminatively Trained Part Based Models, PAMI 32(9), 2010

Root 
filter

Part 
filters

Deformation 
weights

Source: S. Lazebnik

http://people.cs.uchicago.edu/~pff/papers/lsvm-pami.pdf
http://people.cs.uchicago.edu/~pff/papers/lsvm-pami.pdf


Discriminative part-based models

Multiple components

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection with 
Discriminatively Trained Part Based Models, PAMI 32(9), 2010

Source: S. Lazebnik

http://people.cs.uchicago.edu/~pff/papers/lsvm-pami.pdf
http://people.cs.uchicago.edu/~pff/papers/lsvm-pami.pdf


Discriminative part-based models

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection with 
Discriminatively Trained Part Based Models, PAMI 32(9), 2010

http://people.cs.uchicago.edu/~pff/papers/lsvm-pami.pdf
http://people.cs.uchicago.edu/~pff/papers/lsvm-pami.pdf


Conceptual approach: Proposal-driven detection

• Generate and evaluate a few hundred region proposals 
• Proposal mechanism can take advantage of low-level perceptual 

organization cues 
• Proposal mechanism can be category-specific or category-

independent, hand-crafted or trained 
• Classifier can be slower but more powerful

Source: S. Lazebnik



Selective search for detection
• Use hierarchical segmentation: start with small 

superpixels and merge based on diverse cues

J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders, Selective Search for Object 
Recognition, IJCV 2013

http://koen.me/research/selectivesearch/
http://koen.me/research/selectivesearch/


R-CNN: Region proposals + CNN features

Input image

ConvNet

ConvNet

ConvNet

SVMs

SVMs

SVMs

Warped image regions

Forward each region 
through ConvNet

Classify regions with SVMs

Region proposals

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for Accurate Object Detection and Semantic 
Segmentation, CVPR 2014. 

Source: R. Girshick

http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf
http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf
http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf


R-CNN details

• Regions: ~2000 Selective Search proposals 
• Network: AlexNet pre-trained on ImageNet (1000 classes), 

fine-tuned on PASCAL (21 classes) 
• Final detector: warp proposal regions, extract fc7 network 

activations (4096 dimensions), classify with linear SVM 
• Bounding box regression to refine box locations 
• Performance: mAP of 53.7% on PASCAL 2010  

(vs. 35.1% for Selective Search and 33.4% for Deformable 
Part Models)

Source: S. Lazebnik



R-CNN pros and cons
• Pros 

• Accurate! 
• Any deep architecture can immediately be “plugged in” 

• Cons 
• Not a single end-to-end system 

• Fine-tune network with softmax classifier (log loss) 
• Train post-hoc linear SVMs (hinge loss) 
• Train post-hoc bounding-box regressions (least squares) 

• Training is slow (84h), takes a lot of disk space 
• 2000 CNN passes per image 

• Inference (detection) is slow (47s / image with VGG16)



Fast R-CNN

ConvNet

Forward whole image through ConvNet

Conv5 feature map of image

RoI Pooling layer

Linear + 
softmax

FCs Fully-connected layers

Softmax classifier

Region 
proposals

Linear Bounding-box regressors

R. Girshick, Fast R-CNN, ICCV 2015Source: R. Girshick

http://arxiv.org/pdf/1504.08083.pdf


RoI pooling
• “Crop and resample” a fixed-size feature 

representing a region of interest out of the outputs of 
the last conv layer 

• Use nearest-neighbor interpolation of coordinates, max pooling

RoI 
pooling 

layer

Conv feature map

FC layers 
…

Region of Interest 
(RoI)

RoI 
feature

Source: R. Girshick, K. He



Prediction
• For each RoI, network predicts probabilities for C+1 

classes (class 0 is background) and four bounding 
box offsets for C classes

R. Girshick, Fast R-CNN, ICCV 2015

http://arxiv.org/pdf/1504.08083.pdf


Fast R-CNN training

ConvNet

Linear + 
softmax

FCs

Linear

Log loss + smooth L1 loss

Trainable

Multi-task loss

R. Girshick, Fast R-CNN, ICCV 2015Source: R. Girshick

http://arxiv.org/pdf/1504.08083.pdf


Multi-task loss
• Loss for ground truth class , predicted class 

probabilities , ground truth box , and predicted 
box : 

• Regression loss: smooth L1 loss on top of log space 
offsets relative to proposal  

𝑦
𝑃(𝑦) 𝑏

�̂�

𝐿reg(𝑏, �̂�) = ∑
𝑖={𝑥,𝑦,𝑤,h}

smooth𝐿1(𝑏𝑖 − �̂�𝑖)

softmax loss regression loss

𝐿(𝑦,  𝑃,  𝑏, �̂�) = − log𝑃(𝑦) + 𝜆𝕀[𝑦 ≥ 1]𝐿reg(𝑏, �̂�)



Fast R-CNN results

Fast R-CNN R-CNN 

Train time (h) 9.5 84

- Speedup 8.8x 1x
Test time / image 0.32s 47.0s

Test speedup 146x 1x

mAP 66.9% 66.0%

Timings exclude object proposal time, which is equal for all methods. 
All methods use VGG16 from Simonyan and Zisserman.

Source: R. Girshick



Faster R-CNN

CNN

feature map

Region 
proposals

CNN

feature map

Region Proposal 
Network

S. Ren, K. He, R. Girshick, and J. Sun, Faster R-CNN: Towards Real-Time Object Detection with 
Region Proposal Networks, NIPS 2015

share features

http://arxiv.org/pdf/1506.01497.pdf
http://arxiv.org/pdf/1506.01497.pdf
http://arxiv.org/pdf/1506.01497.pdf


Region proposal network (RPN)
• Slide a small window (3x3) over the conv5 layer  

• Predict object/no object 
• Regress bounding box coordinates with reference to anchors  

(3 scales x 3 aspect ratios)



One network, four losses

image

CNN

feature map

Region Proposal Network

proposals

RoI pooling

Classification  
loss

Bounding-box 
regression loss

…

Classification  
loss

Bounding-box 
regression loss

Source: R. Girshick, K. He



Faster R-CNN results



Streamlined detection architectures
• The Faster R-CNN pipeline separates proposal 

generation and region classification: 

• Is it possible do detection in one shot?

Conv feature 
map of the 

entire image

Region 
Proposals

RoI 
features

RPN

RoI 
pooling

Classification + 
Regression

Detections

Conv feature 
map of the 

entire image
Detections

Classification + 
Regression

Source: S. Lazebnik



YOLO
• Divide the image into a coarse grid and directly 

predict class label and a few candidate boxes for 
each grid cell

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You Only Look Once: Unified, Real-Time 
Object Detection, CVPR 2016

https://pjreddie.com/media/files/papers/yolo_1.pdf
https://pjreddie.com/media/files/papers/yolo_1.pdf


YOLO
1. Take conv feature maps at 7x7 resolution 
2. Add two FC layers to  predict, at each location,  

a score for each class and 2 bboxes w/ confidences 
– For PASCAL, output is 7x7x30 (30 = 20 + 2*(4+1))

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You Only Look Once: Unified, Real-Time 
Object Detection, CVPR 2016Source: S. Lazebnik

https://pjreddie.com/media/files/papers/yolo_1.pdf
https://pjreddie.com/media/files/papers/yolo_1.pdf


YOLO
• Objective function:

Regression

Object/no object 
confidence

Class prediction



YOLO: Results
• Each grid cell predicts only two boxes and can only 

have one class – this limits the number of nearby 
objects that can be predicted 

• Localization accuracy suffers compared to Fast(er) R-
CNN due to coarser features, errors on small boxes 

• 7x speedup over Faster R-CNN (45-155 FPS vs. 7-18 
FPS)

Performance on PASCAL 2007



SSD

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. Berg, SSD: Single Shot 
MultiBox Detector, ECCV 2016.

• Similarly to YOLO, predict bounding boxes directly from 
conv maps 

• Unlike YOLO, do not use FC layers and predict different 
size boxes from conv maps at different resolutions 

• Similarly to RPN, use anchors

http://arxiv.org/pdf/1512.02325.pdf
http://arxiv.org/pdf/1512.02325.pdf


SSD

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. Berg, SSD: Single Shot 
MultiBox Detector, ECCV 2016.

http://arxiv.org/pdf/1512.02325.pdf
http://arxiv.org/pdf/1512.02325.pdf


Object detection overview
• Different choices for “base network”: 

– VGG, ResNet… 
• Object detection architecture: 

– Region-based: R-CNN, Fast R-CNN, Faster R-CNN 
– Single shot: YOLO, SSD 

• Faster R-CNN is slower but more accurate. 
• YOLO/SSD are faster but less accurate.

Huang et al. “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017 


