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Outline

• Wrap-up of SfM 

• Recognition, classical methods, and supervised 
learning 

• Introduction to neural networks
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• With no constraints on the camera calibration matrix or on 
the scene, we get a projective reconstruction 

• Need additional information to upgrade the reconstruction to 
affine, similarity, or Euclidean



Structure from Motion

Given m pictures of n points, can we recover 
• the three-dimensional configuration of these points? 
• the camera configurations?



The Euclidean (perspective) Structure-from-Motion Problem

Given m (internally) calibrated perspective images of n fixed  
points Pj   we can write

Problem: estimate the m 3x4 matrices Mi  = [Ri ti] and 
the n positions Pj  from the mn correspondences pij  .
2mn equations in 11m (or rather 5m)+3n unknowns

Overconstrained problem, that can be solved 
using (non-linear) least squares!



Euclidean (= similarity) ambiguity



The Projective Structure-from-Motion Problem

Given m uncalibrated perspective images of n fixed points Pj   
we can write

Problem: estimate the m 3x4 matrices Mi  and 
the n positions Pj  from the mn correspondences pij  .
2mn equations in 11m+3n unknowns

Overconstrained problem, that can be solved 
using (non-linear) least squares!



Projective ambiguity



Structure from motion
• Let us now look at simpler, affine cameras

center at  
infinity



The Affine Structure-from-Motion Problem

Given m images of n fixed points P  we can write

Problem: estimate the m 2x4 matrices M   and 
the n positions P  from the mn correspondences p  .

i
j ij

2mn equations in 8m+3n unknowns

Overconstrained problem, that can be solved 
using (non-linear) least squares!

j



The Affine Epipolar Constraint

Note: the epipolar lines are parallel.



The Affine Fundamental Matrix

where



Mean errors: 3.24 and 3.15pixel (without normalization 
160.92 and 158.54pixel).

Affine case..



The Affine Epipolar Constraint

Note: the epipolar lines are parallel.



An Affine Trick.. Algebraic Scene Reconstruction Method



Multiple affine images

Suppose we observe a static scene with m fixed cameras..

+ r with



Multiple affine images

Idea: pick one of the points (or their center of mass) 
as the origin.



What if we could factorize D?  (Tomasi and Kanade, 1992)

Affine SFM is solved!

Singular Value Decomposition

We can take



Recognition, classical approaches, and ML



Adapted from 
Fei-Fei Li

Common recognition tasks



Image classification and tagging

• outdoor 
• mountains 
• city 
• Asia 
• Lhasa 
• …

Adapted from 
Fei-Fei Li



Object detection
• find pedestrians

Adapted from 
Fei-Fei Li



Activity recognition

• walking 
• shopping 
• rolling a cart 
• sitting 
• talking 
• …

Adapted from 
Fei-Fei Li



Semantic segmentation

Adapted from 
Fei-Fei Li



Semantic segmentation
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Adapted from 
Fei-Fei Li



Image description
This is a busy street in an Asian city. 
Mountains and a large palace or fortress 
loom in the background. In the 
foreground, we see colorful souvenir stalls 
and people walking around and shopping. 
One person in the lower left is pushing an 
empty cart, and a couple of people in the 
middle are sitting, possibly posing for a 
photograph.

Adapted from 
Fei-Fei Li



How many visual object categories are there?

~10,000 to 30,000

Biederman 1987Source: J. Hays



~10,000 to 30,000

Source: J. Hays



Within-class variations

Svetlana Lazebnik



“Classic” recognition pipeline

Feature 
representation

Trainable 
classifier

Image 
Pixels

• Hand-crafted feature representation 
• Off-the-shelf trainable classifier 

Class 
label

Source: S. Lazebnik



Prediction

Steps
Training 
Labels

Training 
Images

Training

Training

Image 
Features

Image 
Features

Testing

Test Image

Learned 
model

Learned 
model

Slide credit: D. Hoiem



“Classic” representation: Bag of features

Source: S. Lazebnik



Bag of features: Outline
1. Extract local features 
2. Learn “visual vocabulary” 
3. Quantize local features using visual vocabulary  
4. Represent images by frequencies of “visual words” 

Source: S. Lazebnik



Contour based classification
• HOG+SVM+sliding window, Dalal and Trigs [2005]



Histograms of Oriented Gradients
• Use Histograms

Dalal, N., & Triggs, B. Histograms of oriented gradients for human detection. CVPR 2005.



“Classic” recognition pipeline

Feature 
representation

Trainable 
classifier

Image 
Pixels

• Hand-crafted feature representation 
• Off-the-shelf trainable classifier 

Class 
label

Source: S. Lazebnik



Non-parametric learning: nearest neighbor

f(x) = label of the training example nearest to x 

All we need is a distance or similarity function for our 
inputs 
No training required!

Test 
example

Training 
examples 

from class 1

Training 
examples 

from class 2

Source: S. Lazebnik



K-nearest neighbor classifier
• For a new point, find the k closest points from training 

data 
• Vote for class label with labels of the k points 

k = 5

Source: S. Lazebnik



K-nearest neighbor classifier
Which classifier is more robust to outliers?

Credit: Andrej Karpathy, http://cs231n.github.io/classification/
Source: S. Lazebnik

http://cs231n.github.io/classification/


K-nearest neighbor classifier

Credit: Andrej Karpathy, http://cs231n.github.io/classification/
Source: S. Lazebnik

http://cs231n.github.io/classification/


Parametric supervised learning

• Data 
• A function class  
• A loss function  
• Minimize the empirical risk 

• Hope that this “generalizes”: if  is a r.v., we 
would like to minimize

ℱ = {fθ | θ ∈ ℝd}
ℓ : 𝒴 × 𝒴 → ℝ

(X, Y)

L̂(θ) =
1
n

n

∑
i=1

ℓ( fθ(xi), yi)

L(θ) = 𝔼[ℓ( fθ(X), Y)]



Linear classifiers

Find a linear function to separate the classes: 

 f(x) = sgn(w ⋅ x + b)

Source: S. Lazebnik



Linear classifiers
• When the data is linearly separable, there may be 

more than one separator (hyperplane)

Which separator 
is best?

Source: S. Lazebnik



Support vector machines
• Find hyperplane that maximizes the margin between 

the positive and negative examples

1:1)(negative
1:1)( positive
−≤+⋅−=

≥+⋅=
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iii
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MarginSupport vectors

C. Burges, A Tutorial on Support Vector Machines for Pattern 
Recognition,  Data Mining and Knowledge Discovery, 1998 

Distance between point 
and hyperplane: ||||

||
w
wx bi +⋅

For support vectors, 1±=+⋅ bi wx

Therefore, the margin is  2 / ||w|| 

Source: S. Lazebnik

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Finding the maximum margin hyperplane
1. Maximize margin 2 / ||w|| 
2. Correctly classify all training data:  
 
 
 

Quadratic optimization problem: 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C. Burges, A Tutorial on Support Vector Machines for Pattern 
Recognition,  Data Mining and Knowledge Discovery, 1998 Source: S. Lazebnik

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


SVM parameter learning

• Separable data: 

• Non-separable data:

1)(subject to
2
1

min 2

,
≥+⋅ by iib

xww
w

Maximize margin Classify training data correctly 

min
w,b

1
2
w 2

+C max 0,1− yi (w⋅xi +b)( )
i=1

n

∑

Maximize margin Minimize classification mistakes

Source: S. Lazebnik



SVM parameter learning

Demo: http://cs.stanford.edu/people/karpathy/svmjs/demo
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Source: S. Lazebnik

http://cs.stanford.edu/people/karpathy/svmjs/demo


Nonlinear SVMs
• General idea: the original input space can always be 

mapped to some higher-dimensional feature space 
where the training set is separable

Φ:  x → φ(x)

Image source
Source: S. Lazebnik

http://stackoverflow.com/questions/9480605/what-is-the-relation-between-the-number-of-support-vectors-and-training-data-and


• Linearly separable dataset in 1D: 
 

 

 

• Non-separable dataset in 1D: 

• We can map the data to a higher-dimensional space:

0 x

0 x

0 x

x2

Nonlinear SVMs

Slide credit: Andrew Moore



The kernel trick
• General idea: the original input space can always be 

mapped to some higher-dimensional feature space 
where the training set is separable 

• The kernel trick: instead of explicitly computing the 
lifting transformation φ(x), define a kernel function K 
such that 
 
         K(x , y) = φ(x) · φ(y) 

 (to be valid, the kernel function must satisfy 
Mercer’s condition)

Source: S. Lazebnik



The kernel trick
• Linear SVM decision function:

C. Burges, A Tutorial on Support Vector Machines for Pattern 
Recognition,  Data Mining and Knowledge Discovery, 1998 

byb
i iii +⋅=+⋅ ∑ xxxw α

Support  
vector

learned 
weight

Source: S. Lazebnik

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


The kernel trick
• Linear SVM decision function: 

• Kernel SVM decision function: 

• This gives a nonlinear decision boundary in the 
original feature space

bKyby
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C. Burges, A Tutorial on Support Vector Machines for Pattern 
Recognition,  Data Mining and Knowledge Discovery, 1998 

byb
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Source: S. Lazebnik

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Gaussian kernel
• Also known as the radial basis function (RBF) kernel:
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Source: S. Lazebnik



Gaussian kernel

SV’s

Source: S. Lazebnik



SVMs: Pros and cons
• Pros 

• Kernel-based framework is very powerful, flexible 
• Training is convex optimization, globally optimal solution can be 

found 
• Amenable to theoretical analysis 
• SVMs work very well in practice, even with very small training 

sample sizes 

• Cons 
• No “direct” multi-class SVM, must combine two-class SVMs (e.g., 

with one-vs-others) 
• Computation, memory (esp. for nonlinear SVMs)

Source: S. Lazebnik



Best practices for training classifiers
• Goal: obtain a classifier with good 

generalization or performance on never 
before seen data  

1. Learn parameters on the training set 
2. Tune hyperparameters (implementation 

choices) on the held out validation set 
3. Evaluate performance on the test set 

– Crucial: do not peek at the test set when 
iterating steps 1 and 2!

Source: S. Lazebnik



Underfitting and overfitting
• Underfitting: training and test error are both high 

– Model does an equally poor job on the training and the test set 
– The model is too “simple” to represent the data or the model  

is not trained well 
• Overfitting: Training error is low but test error is high 

• Model fits irrelevant characteristics (noise) in the training data 
– Model is too complex or amount of training data is insufficient

Underfitting OverfittingGood tradeoff

Figure sourceSource: S. Lazebnik

http://www.holehouse.org/mlclass/07_Regularization.html


Summary: classical detection pipeline

1. Sample a test region (e.g. densely) 
2. Compute a descriptor (e.g. BoW, Histogram of 

Gradients) 
3. Apply a simple classifier (e.g. Linear)



Constellation approach
• Fischler and Elschlager [1973]



Deformable parts model
• DPM, Felzenszwalb et al. [2010] 
Reference for classification until 2014.



Introduction to Neural Networks

Many slides from M. Aubry





Example: classical vision

Hand crafted decriptor 
Ex: HOG, bag of features

Simple 
classifier: 
Ex: SVM

Image



Deep Learning

• Idea:  
1. Learn intermediate representation 
2. Compose intermediate representations 

Implicit hypothesis: this compositionality is useful for the data we have

classifierImage Layer 1 Layer 2 …



Deep representation learning
• Simple idea: learn     (with a simple form) 
• Combine more than two layers, learn                                  

= hierarchical representation, multilayer perceptron 

Relationship/difference with kernels:  
• The mapping is explicit and learned (often implicit and hand 

designed in kernel methods) 
• The result of the mapping is relatively low dimensional 
• Not a convex problem -> no guarantees



Relation to Kernel idea
Supervised learning: 
• n training data pairs 
• Learn a linear predictor/decision function 
(Logistic regression, SVM…) 

Kernel: 
• Replace the dot product              by a kernel                                               
• Can be interpreted as learning a classifier  
• More powerful, but you have to design the kernel



Results

https://www.dsiac.org



Perceptron
• Frank Rosenblatt, 1957



Perceptron
• Frank Rosenblatt, 1957

Neuron



Biological neuron

Slide L. Lazebnik



Perceptron
• Frank Rosenblatt, 1957

Issue: incapable of performing XOR (Minsky and Papert 1969)



Perceptron

Hidden unitsInput



2 layers perceptron

Hidden unitsInput Output

Layer



Abstraction

Input Layer 1 
(linear + non-linearity)

Layer 2 
(linear) Output



Non linearities
• Sign, sigmoid, tanh, ReLu, “leaky” ReLu  (                ) 

• In practice, some can make the networks harder to 
train. 

• Lots of success with ReLu 
– Avoids extremely small derivatives (e.g. of a sigmoid) 
– Leads to sparse outputs 
– Very simple derivative 

• Why non linearities?



Universal approximation theorem

• A 2 layer MLP with increasing continuous and bounded non 
linearity can approximate any continuous function on a 
compact given enough hidden neurons (Cybenko 1989) 

• Alternative view: the set of parametric functions defined by 2-
layers MLPs is dense.  

• Limitation: doesn’t say anything about the number of hidden 
neurons required -> more layers, deeper networks could be 
more efficient (e.g. Bengio et al ’07, Montufar et al ’14)



Abstraction

Input Layer 1 
(linear + non-linearity)

Layer 2 
(linear) Output



Abstraction

Feed-forward NN 

Multi-layer perceptron: all layers except the last one are 
Linear+NL and the last one is linear

Input Layer 1 Layer 2 Output… Layer N



Multi-layer perceptrons



Multi-layer perceptrons
• Each perceptron to has a nonlinearity 
• To be trainable, the nonlinearity should be 

differentiable

Sigmoid: g(t) = 1
1+e−t

Rectified linear unit (ReLU): g(t) = max(0,t) 

Source: S. Lazebnik



• Fukushima 1980 

• Biological inspiration: Hubel and Wiesel 1962: simple 
and complex cells in the visual cortex

Neocognitron



Linear

• Issue: lots of parameters

Input vector

x

Weights Output

N

N

K

K



Neural networks for images

image Fully connected layer
Source: S. Lazebnik



image

Neural networks for images

Convolutional layer
Source: S. Lazebnik



image

feature map

learned 
weights

Neural networks for images

Convolutional layer
Source: S. Lazebnik



image

feature map

learned 
weights

Neural networks for images

Convolutional layer
Source: S. Lazebnik



Convolution as feature extraction

Input Feature Map

.

.

.

Source: S. Lazebnik



image

feature map

learned 
weights

Neural networks for images

Convolutional layer
Source: S. Lazebnik



image
next 
layerConvolutional layer 

+ ReLU

Neural networks for images

Source: S. Lazebnik



Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Feature maps

Input Feature Map

.

.

.

Key operations in a CNN

Source: R. Fergus, Y. LeCun



Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Feature maps

Key operations in a CNN

Source: R. Fergus, Y. LeCun

Rectified Linear Unit (ReLU)



Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Feature maps

Max

Key operations in a CNN

Source: R. Fergus, Y. LeCun



Key operations in a CNN

P(c | x) = exp(wc ⋅x)

exp(wk ⋅x)
k=1

C

∑

Softmax layer:

Source: S. Lazebnik



LeNet-5
• Average pooling 
• Sigmoid or tanh nonlinearity 
• Fully connected layers at the end 
• Trained on MNIST digit dataset with 60K training 

examples

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document 
recognition, Proc. IEEE 86(11): 2278–2324, 1998.

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf


LeNet: First layer
• Directly interpretable. E.g. LeNet 5 during training

Gif from Y. LeCun



Questions

• How to define the loss? 

• How to minimize the loss?


