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Outline

* Wrap-up of StM

* Recognition, classical methods, and supervised
learning

* |Introduction to neural networks



Types of ambiguity
Projective At
15dof vT
Affine
12dof 0 1

Preserves intersection
and tangency

Preserves parallellism,
volume ratios

Similarity SRt SO Preserves angles, ratios
7dof 07 1 of length
Euclidean R t /\

Preserves angles, lengths
6dof 07 1 ,

With no constraints on the camera calibration matrix or on
the scene, we get a projective reconstruction

Need additional information to upgrade the reconstruction to
affine, similarity, or Euclidean



Structure from Motion

Given m pictures of n points, can we recover
* the three-dimensional configuration of these points?
* the camera configurations?



The Euclidean (perspective) Structure-from-Motion Problem

Given m (internally) calibrated perspective images of n fixed
points P; we can write

1=1,...,m and j9=1,...,n.

Problem: estimate the m 3x4 matrices Mi =[R; ] and

the n positions P; from the mn correspondences p;; .

2mn equations 1n 11m (or rather 5m)+3n unknowns

L

Overconstrained problem, that can be solved
using (non-linear) least squares!




Euclidean (= similarity) ambiguity




The Projective Structure-from-Motion Problem

Given m uncalibrated perspective images of n fixed points P,
we can write

1=1,...,m and j9=1,...,n.

Problem: estimate the m 3x4 matrices Mi and

the n positions P; from the mn correspondences p;; .

2mn equations 1n 11m+3n unknowns

L

Overconstrained problem, that can be solved
using (non-linear) least squares!







Structure from motion

» Let us now look at simpler, affine cameras

center at
infinity




The Affine Structure-from-Motion Problem

Given m 1mages of n fixed points Ij we can write

P;
1

pi; = M, (

) = A,P;+b; for i=1, m and 7 =1,...,n.

Problem: estimate the m 2x4 matrices M @and
the n positions Pj from the mn correspondences pi;.

2mn equations 1n 8m+3n unknowns

Overconstrained problem, that can be solved
using (non-linear) least squares!




The Affine Epipolar Constraint

au+ Bv+au +680+6=0

Note: the epipolar lines are parallel.



The Affine Fundamental Matrix

au-+ Bv+aou + 68V +6=0




Affine case..

Mean errors: 3.24 and 3.15pixel (without normalization
160.92 and 158.54pixel).




The Affine Epipolar Constraint

au+ Bv+au +680+6=0

Note: the epipolar lines are parallel.



An Affine Trick.. ‘ Algebraic Scene Reconstruction Method

M':<O 0 1 0)

a b ¢ d




Multiple affine images

Suppose we observe a static scene with m fixed cameras..

P,)




Multiple affine images

Idea: pick one of the points (or their center of mass)
as the origin.

DY (q, ... q,)=AP, with PY (P, ... P,)




What if we could factorize D? (Tomasi and Kanade, 1992)

AP =D ‘ Affine SFM is solved!

Zlq — AP;|* = |D - AP|"

Singular Value Decomposition

Theorem: When A has a rank greater than p, U,W, VT 18 the best
possible rank-p approximation of A in the sense of he Frobenius
Norm.

We can take




Recognition, classical approaches, and ML



Common recognition tasks
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Fei-Fei Li




Image classification and tagging

B utdoor
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T ® Asia
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Adapted from
Fei-Fei Li




Object detection

g ¢ find pedestrians

Adapted from
Fei-Fei Li




Activity recognition

e ShOpping
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Semantic segmentation
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Adapted from
Fei-Fei Li




Semantic segmentation
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Image description

This is a busy street in an Asian city.
= Mountains and a large palace or fortress
loom In the background. In the
" foreground, we see colorful souvenir stalls
and people walking around and shopping.
&EIMILH
- | One person in the lower left is pushing an
; q& empty cart, and a couple of people in the
| middle are sitting, possibly posing for a
15. w\ photograph

Adapted from
Fei-Fei Li
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Within-class variations

Svetlana Lazebnik



“Classic” recognition pipeline

Image
Pixels &

* Hand-crafted feature representation
» Off-the-shelf trainable classifier

Source: S. Lazebnik
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TeSt Image Slide credit: D. Hoiem



“Classic” representation: Bag of features

Source: S. Lazebnik



Bag of features: Outline

—xtract local features

_earn “visual vocabulary”

Quantize local features using visual vocabulary
Represent images by frequencies of “visual words”

> W o

Source: S. Laze‘%k .



Contour based classification

« HOG+SVM+sliding window, Dalal and Trigs [2005]

'FPEERRN!




Histograms of Oriented Gradients

* Use Histograms

Dalal, N., & Triggs, B. Histograms of oriented gradients for human detection. CVPR 2005.



“Classic” recognition pipeline

Image
Pixels &

* Hand-crafted feature representation
» Off-the-shelf trainable classifier

Source: S. Lazebnik



Non-parametric learning: nearest neighbor

O
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f(x) = label of the training example nearest to x

All we need Is a distance or similarity function for our
iInputs
No training required!

Source: S. Lazebnik



K-nearest neighbor classifier

* For anew point, find the k closest points from training
data

* Vote for class label with labels of the k points

Source: S. Lazebnik =X,



K-nearest neighbor classifier

Which classifier is more robust to outliers”?

the data NN classifier 5-NN classifier
% " S g
:fg.%. v $ ki
o‘: :.. - %0::
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,‘ oo "00®
A

Credit: Andrej Karpathy, http://cs231n.qgithub.io/classification/

Source: S. Lazebnik



http://cs231n.github.io/classification/

K-nearest neighbor classifier
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Left: Example images from the CIFAR-10 dataset. Right: first column shows a few test images and next to each we show the
top 10 nearest neighbors in the training set according to pixel-wise difference.

Credit: Andrej Karpathy, http://cs231n.github.io/classification/

Source: S. Lazebnik


http://cs231n.github.io/classification/

Parametric supervised learning

* Data {(xl)ﬁ) (ann)}
. Afunction class F = {fy| 0 € R

. Aloss function? : 4 X Y — R
* Minimize the empirical risk

L) = — Z £(fy(x). )

 Hope that this ° generahzes if (X,Y)isarv., we
would like to minimize

L(0) = E[£(fo(X), Y)]




L inear classifiers
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Find a linear function to separate the classes:

f(x) = sgn(w - X + b)

Source: S. Lazebnik



L inear classifiers

e \When the data is linearly separable, there may be
more than one separator (hyperplane)

O
O
O
O
O
O
® o o e o
O \
O
® O
O

Which separator
® is best?

Source: S. Lazebnik



Support vector machines

e Find hyperplane that maximizes the margin between
the positive and negative examples

Support vectors Margin

X, positive (y, =1): X, W+b=1

x, negative(y, =-1): x,-w+b=-1

For support vectors, X, W +b==]

Distance between point | X; -
and hyperplane:

Therefore, the marginis 2/|w|

C. Burges, A Tutorial on Support Vector Machines for Pattern

Source: S. Lazebnik Recognition, Data Mining and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Finding the maximum margin hyperplane

1. Maximize margin 2/ ||w

2. Correctly classity all training data:
X, positive (y; =1): X, W+b=1

X, negative(y, =-1): x,-w+b=-1

Quadratic optimization problem:

mlglEHWH subjectto y,(wW-x, +b) =1

C. Burges, A Tutorial on Support Vector Machines for Pattern
Source: S. Lazebnik Recognition, Data Mining and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

SVM parameter learning

* Separable data: mm—HWH

wb )

\ )
!

Maximize margin

* Non-separable data:

Source: S. Lazebnik

mm —HWH +szax(01 Y (W-X; + b))

\ } \

subject to

\

y.(W-x, +b)=1

)

!

Classify training data correctly

)

f

Maximize margin

|

Minimize classification mistakes




SVM parameter learning

mm —HWH +szax(01 y.(W-X. +b))

Hinge Loss
4
@
2 O
@

2

1

0 : ,

- 0 2
Margin

Source: S. Lazebnik Demo: http://cs.stanford.edu/people/karpathy/svmis/demo



http://cs.stanford.edu/people/karpathy/svmjs/demo

Nonlinear SVMs

 General idea: the original input space can always be
mapped to some higher-dimensional feature space
where the training set is separable

O: x— ¢o(x) ® ®
f ©
\" Q@
@,
) T R
’ O

Input Space Feature Space

Image source

Source: S. Lazebnik


http://stackoverflow.com/questions/9480605/what-is-the-relation-between-the-number-of-support-vectors-and-training-data-and

Nonlinear SVMs

* Linearly separable dataset in 1D:

0

* Non-separable datasét in 1D:

@ O o0 ———000—0 ¢ *—
0 X

* We can map the data to a higher-dimensional space:

Slide credit: Andrew Moore



The kernel trick

 General idea: the original input space can always be
mapped to some higher-dimensional feature space
where the training set is separable

 The kernel trick: instead of explicitly computing the
lifting transformation ¢(x), define a kernel function K

such that

K(x,y) = 9(x) - p(y)

(to be valid, the kernel function must satisty
Mercer’s condition)

Source: S. Lazebnik



The kernel trick

e | inear SVM decision function:

W-x+b=2iociyixi-x +b

/

learned Support
weight vector

C. Burges, A Tutorial on Support Vector Machines for Pattern
Source: S. Lazebnik Recognition, Data Mining and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

The kernel trick

e |inear SVM decision function:
W X+b= Eiocl.yixi ‘X +b
o Kernel SVM decision function:
Eocl.yicp(xi)-cp(x) +b = Eocl.yl.K(xi,x) +b

e [his gives a nonlinear decision boundary in the
original feature space

C. Burges, A Tutorial on Support Vector Machines for Pattern
Source: S. Lazebnik Recognition, Data Mining and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

(Gaussian kernel

* Also known as the radial basis function (RBF) kernel:
| 2
K(x,y)=exp -—2||X - Y||
O
K(x, y)

[Ix =yl

Source: S. Lazebnik



(Gaussian kernel

-2 | =

_3 | | | | | | I
-3 2 -1 0 1 2 3 4 =

Source: S. Lazebnik



SVMs: Pros and cons

e Pros
e Kernel-based framework is very powerful, flexible

e Training is convex optimization, globally optimal solution can be
found

e Amenable to theoretical analysis

e SVMs work very well in practice, even with very small training
sample sizes

e Cons

e No “direct” multi-class SVM, must combine two-class SVMs (e.g.,
with one-vs-others)

e Computation, memory (esp. for nonlinear SVMs)

Source: S. Lazebnik



Best practices for training classifiers

* Goal: obtain a classifier with good

generalization or performance on never
before seen data

o Trainin
1. Learn parameters on the fraining set Datag

2. Tune hyperparameters (implementation
choices) on the held out validation set

3. Evaluate performance on the fest set

— Crucial: do not peek at the test set when Held-Out
iterating steps 1 and 2! Data

Test
Data

Source: S. Lazebnik



Underfitting and overfitting

* Underfitting: training and test error are both high
— Model does an equally poor job on the training and the test set

— The model is too “simple” to represent the data or the model
IS not trained well

* Overfitting: Training error is low but test error is high
* Model fits irrelevant characteristics (noise) in the training data
— Model is too complex or amount of training data is insufficient

Underfitting Good tradeoff Overfitting

Source: S. Lazebnik Figure source



http://www.holehouse.org/mlclass/07_Regularization.html

Summary: classical detection pipeline

1. Sample a test region (e.g. densely)

2. Compute a descriptor (e.g. BoW, Histogram of
Gradients)

3. Apply a simple classifier (e.g. Linear)



Constellation approach

- Fischler and Elschlager [1973]

LEFT
EDGE

MOUTH



Deformable parts model

 DPM, Felzenszwalb et al. [2010]
Reference for classification until 2014.




Introduction to Neural Networks

Many slides from M. Aubry






Example: classical vision

Image

Hand crafted decriptor
Ex: HOG, bag of features

e e
PPt m——N———

+
-
»
X
.
»
*
¥
-
A
»
»

RRP P PNEANNT N
e bt L2
X AN,

”
7
7/
!
!
\

N e 3N T
2 3 T D e
SN
TR L —

Simple
classifier:
Ex: SVM




Deep Learning

> ... — [classifier

/0 \

0
1
0

* |dea:
1. Learn intermediate representation
2. Compose intermediate representations

Implicit hypothesis: this compositionality is useful for the data we have



Deep representation learning

« Simple idea: learn ¢ (with a simple form)

« Combine more than two layers, learn f o ¢io¢20 ¢s...
= hierarchical representation, multilayer perceptron

Relationship/difference with kernels:

* The mapping is explicit and learned (often implicit and hand

s
. T

esigned in kernel methods)

ne result of the mapping is relatively low dimensional

* N

ot a convex problem -> no guarantees



Relation to Kernel idea

Supervised learning:

* ntraining data pairs (1,Y1), ..e; (Tn, Yn) € X X Y
* Learn a linear predictor/decision function f X — A
(Logistic regression, SVM...)

Kernel:
 Replace the dot product< x|y > by a kernel K(z,y) =< ¢(z)|o(y) >
* (Can be interpreted as learning a classifier f o @

* More powerful, but you have to design the kernel



Results

ILSVRC Top 5 Error on ImageNet
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https://www.dsiac.org



Perceptron

 Frank Rosenblatt, 1957

f(x) = sign (Z wzx’)



Perceptron

 Frank Rosenblatt, 1957

Neuron

| /
XL w]

v wg\ @ f(x) = sign (Z wzx’)




Biological neuron

Axonal arborization

\ Axon from another cell
Synapse
Dendrite Axon
Nucleus

\/

Synapses

Cell body or Soma

Slide L. Lazebnik



Perceptron

 Frank Rosenblatt, 1957

o () @) = sign(w' )

Issue: incapable of performing XOR (Minsky and Papert 1969)



Perceptron




2 layers perceptron

Input W, Hidden units W Output




Abstraction

Input

Layer 1
(linear + non-linearity)

Layer 2
(linear)

Output




Non linearities

* Sign, sigmoid, tanh, Relu, “leaky” ReLu (maz(z,ex) )

* |n practice, some can make the networks harder to
train.

» [ ots of success with Rel.u
— Avoids extremely small derivatives (e.g. of a sigmoid)

— Leads to sparse outputs
— Very simple derivative

* Why non linearities”



Universal approximation theorem

* A2 layer MLP with increasing continuous and bounded non
inearity can approximate any continuous function on a
compact given enough hidden neurons (Cybenko 1989)

« Alternative view: the set of parametric functions defined by 2-
layers MLPs is dense.

« Limitation: doesn’t say anything about the number of hidden
neurons required -> more layers, deeper networks could be
more efficient (e.g. Bengio et al ‘07, Montufar et al '14)



Abstraction

Input

Layer 1
(linear + non-linearity)

Layer 2
(linear)

Qutput




Abstraction

Feed-forward NN

Input| — |Layer 1| —> |Layer2| —> = ** —> Layer N| —> |Output

Multi-layer perceptron: all layers except the last one are
Linear+NL and the last one is linear



Multi-layer perceptrons

iInput layer

hidden layer 1 hidden layer 2



Multi-layer perceptrons

* Each perceptron to has a nonlinearity
* TJo be trainable, the nonlinearity should be

differentiable
I > / >
Sigmoid: g(f) = 1 Rectified linear unit (ReLU): g(¢) = max(0,?)

1+e!

Source: S. Lazebnik



Neocognitron

 Fukushima 1980
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» Biological inspiration: Hubel and Wiesel 1962: simple
and complex cells in the visual cortex
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Linear

K
N
N K
I - > .

Input vector Weights Output

* |ssue: lots of parameters



Neural networks for images

. hidden layer 1 hidden layer 2 hidden layer 3
input layer

—  _— N e
o2 — NN
—Z NS, 25 NS, 2L output layer

image Fully connected layer

Source: S. Lazebnik



Neural networks for images

image Convolutional layer

Source: S. Lazebnik



Neural networks for images

feature map

/

learned
weights

\ e

image Convolutional layer

Source: S. Lazebnik



Neural networks for images

feature map

/

learned
weights

\ =
& |
p— /

image Convolutional layer

Source: S. Lazebnik



Convolution as feature extraction

Feature Map



Neural networks for images

feature map

/

learned
weights

\ =
& |
p— /

image Convolutional layer

Source: S. Lazebnik



Neural networks for images

next

image Convolutional layer layer

+ RelLU

Source: S. Lazebnik



Key operations in a CNN
{}

[ Feature maps }

{}

[ Spatial pooling }
2\

{ Non-linearity }

{ Input Image 1

Source: R. Fergus, Y. LeCun



Key operations in a CNN
{}

[ Feature maps ]

{}

[ Spatial pooling }

Non-linearity

Rectified Linear Unit (ReLU)

relu(x)

{}

{ Input Image }

Source: R. Fergus, Y. LeCun



Key operations in a CNN
{}

{ Feature maps J

Spatial pooling

AN

{ Non-linearity ]

e

{}

{ Input Image J

Source: R. Fergus, Y. LeCun



Key operations in a CNN

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

I_ ------- N WA
rl'-EE q?:bméhiftg?n

Softmax layer:

exp(W,, - X)
C

2 exp(W, - X)

A(c|x) =

Source: S. Lazebnik



LeNet-5

C3:f. maps 16@10x10
C1:feature maps S4:f. maps 16@5x5

INPUT
6@28x28
o2 1-maps r CS: layer F6:layer QUTPUT

32x32
6@14x14
r

Fullcon*ectnon | Gaussnan connections
Convolutions Subsampling Convolutions Subsampllng Full connection

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document
recognition, Proc. IEEE 86(11): 2278-2324, 1998.



http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

First layer

LeNet

* Directly interpretable. E.g. LeNet 5 during training

ﬁﬁﬁ@ﬁﬁﬁﬁﬁﬁ ﬁl ﬁgﬂ

Gif from Y. LeCun

iteration no ¢



Questions

e How to define the loss?

e How to minimize the loss?



