
Introduction to computer vision XI

Instructors: Jean Ponce and Matthew Trager
jean.ponce@inria.fr,  matthew.trager@cims.nyu.edu

TAs: Jiachen (Jason) Zhu and Sahar Siddiqui
jiachen.zhu@nyu.edu, ss12414@nyu.edu

Slides will be available after class at: 
https://mtrager.github.io/introCV-fall2019/ 



Stereo
• Essential and fundamental matrices
• 8-point agorithm
• Rectification
• Triangulation
• Fusion algorithms

Structure from motion
• Problem definition
• Ambiguities
• Euclidean SFM from the essential matrix
• Affine SFM from two views
• Affine SFM from multiple views
• Projective SFM



Problem with eight-point 
algorithm

• Poor numerical conditioning
• Can be fixed by rescaling the data



The Normalized Eight-Point Algorithm (Hartley, 1995)

• Center the image data at the origin, and scale it so the
mean  squared distance between the origin and the data 
points is 2 pixels: q = T p   ,   q’ = T’ p’.

• Use the eight-point algorithm to compute F from the
points q and q’  .

• Enforce the rank-2 constraint.

• Output  T F T’.T

i i i i

i i



Non-Linear Least-Squares Approach (Luong et al., 1993)

Minimize

with respect to the coefficients of  F , using an 
appropriate rank-2 parameterization.
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Reconstruction

• Linear Method: 
find P  such that

• Non-Linear Method: find Q minimizing



Basic stereo matching algorithm

• For each pixel in the first image
• Find corresponding epipolar line in the right image
• Examine all pixels on the epipolar line and pick the best match
• Triangulate the matches to get depth information

• Simplest case: epipolar lines are scanlines
• When does this happen?



Rectification

All epipolar lines are parallel in the rectified image plane.



Rectification example



Epipolar constraint example



Reconstruction from Rectified Images

Disparity: d=u’-u. Depth: z = -B/d.



Binocular fusion: a problem of correspondence



A Cooperative Model  (Marr and Poggio, 1976)

Excitory connections: continuity

Inhibitory connections: uniqueness

Iterate: C =  S C   - wS C   + C   .e i 0

Reprinted from Vision: A Computational Investigation into the Human Representation and Processing of Visual Information by David Marr.
 1982 by David Marr. Reprinted by permission of Henry Holt and Company, LLC.
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Correlation Methods (1970--)

Normalized Correlation: minimize  q instead.

Slide the window along the epipolar line until w.w’ is maximized.

2Minimize |w-w’|.



Left Right

scanline

Correlation-based methods

Norm. corr



Failures of correlation-based methods

Textureless surfaces Occlusions, repetition

Non-Lambertian surfaces, specularities



Effect of window size

– Smaller window
+ More detail
• More noise

– Larger window
+ Smoother disparity maps
• Less detail

W = 3 W = 20



Results

Correlation-based matching Ground truth

Data



Correlation Methods:  Foreshortening Problems

Solution: add a second pass using disparity estimates to warp
the correlation windows, e.g. Devernay and Faugeras (1994).

Reprinted from “Computing Differential Properties of 3D Shapes from Stereopsis without 3D Models,” by F. Devernay and O. Faugeras, 
Proc. IEEE Conf. on Computer Vision and Pattern Recognition (1994).  1994 IEEE.



How can we improve window-based matching?

• The similarity constraint is local: each 
reference window is matched independently.

• Need to enforce global correspondence 
constraints.



Non-local constraints
• Uniqueness 

• For any point in one image, there should be at most one 
matching point in the other image
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• Uniqueness 

• For any point in one image, there should be at most one 
matching point in the other image

• Ordering
• Corresponding points should be in the same order in both 

views



Non-local constraints
• Uniqueness 

• For any point in one image, there should be at most one 
matching point in the other image

• Ordering
• Corresponding points should be in the same order in both 

views

Ordering constraint does not (always) hold



Non-local constraints
• Uniqueness 

• For any point in one image, there should be at most one 
matching point in the other image

• Ordering
• Corresponding points should be in the same order in both 

views

• Smoothness
• We expect disparity values to change slowly (for the most 

part)



Scanline stereo
• Try to coherently match pixels on the 

entire scanline
• Different scanlines are still optimized 

independently

Left image Right image



“Shortest paths” for scan-line stereo
Left image

Right image

Can be implemented with dynamic programming
(Baker & Binford’81, Ohta & Kanade ’85)
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Shortest path stereo in real life
• Scanline stereo generates streaking 

artifacts

• Can’t use dynamic programming to find 
spatially coherent disparities and 
correspondences on a 2D grid



Stereo matching as energy minimization

I1
I2 D

• Energy functions of this form can be minimized using 
“graph cuts” (aka min-cut/max-flow algorithms)

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy 
Minimization via Graph Cuts,  PAMI 2001
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Combinatorial optimization with unary and binary terms

Quadratic pseudo-Boolean 
function optimization

Binary variables



Generalization to integer variables

• n integer variables in 0..K-1

• nK binary variables (Darbon, 2009)
• x  =0 if x≤k and 1 otherwisek



Quadratic integer function optimization

Submodular case

Min-cut max-flow problems 
(Boros & Hammer, 2002)

Otherwise
NP hard

Efficient exact algorithms
(Ford & Fulkerson ‘56) 
(Goldberg & Tarjan ‘88) 
(Boykov & Kolgomorov ’04)



Quadratic integer function optimization

For example:
with g convex (Ishikawa ‘03)

Min-cut max-flow problems 
(Boros & Hammer, 2002)

Otherwise
NP hard

Efficient exact algorithms
(Ford & Fulkerson ‘56) 
(Goldberg & Tarjan ‘88) 
(Boykov & Kolgomorov ’04)



Quadratic pseudo-Boolean function optimization

For example:
with g convex (Ishikawa ‘03)

Min-cut max-flow problems 
(Boros & Hammer, 2002)

Otherwise
NP hard

Efficient
approximate 
algorithms
(Boykov et al.’01)



Combinatorial optimization:

• Submodularity is “too restrictive” for 
certain stereo settings (use non-convex g 
for example)

• Use iterative approximate solutions 
such as alpha expansion (Boykov et al.
2001)



Back to Stereopsis as energy minimization..

I1
I2 D

• Energy functions of this form can be minimized using 
“graph cuts” (aka min-cut/max-flow algorithms)

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy 
Minimization via Graph Cuts,  PAMI 2001
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Stereo matching as energy minimization

• Note: the above formulation does not treat the 
two images symmetrically, does not enforce 
uniqueness, and does not take occlusions into 
account

• It is possible to come up with an energy that does 
all these things, but it is a bit more complex
• Defined over all possible sets of matches, not 

over all disparity maps with respect to the first 
image

• Includes an occlusion term
• The smoothness term looks different and more 

complicated

V. Kolmogorov and R. Zabih, “Computing Visual Correspondences with 
Occlusions using Graph Cuts, ICCV 2001



Graph cuts Ground truth

For the latest and greatest: http://www.middlebury.edu/stereo

Y. Boykov, O. Veksler and R. Zabih, “Fast Approximate Energy
Minimization via Graph Cuts, PAMI 2001. 

Results



More Views (Okutami and Kanade, 1993)
Pick a reference image, and slide the corresponding
window along the corresponding epipolar lines of all
other images, using inverse depth relative to the first
image as the search parameter.

Use the sum of correlation scores to rank matches.

Reprinted from “A Multiple-Baseline Stereo System,” by M. Okutami and T. Kanade, IEEE Trans. on Pattern
Analysis and Machine Intelligence,  15(4):353-363 (1993). \copyright 1993 IEEE.



I1 I2 I10

Reprinted from “A Multiple-Baseline Stereo System,” by M. Okutami and T. Kanade, IEEE Trans. on Pattern
Analysis and Machine Intelligence,  15(4):353-363 (1993). \copyright 1993 IEEE.



Multi-view geometry questions
• Scene geometry (structure): Given 2D 

point matches in two or more images, 
where are the corresponding points in 
3D?

• Correspondence (fusion): Given a point in 
just one image, how does it constrain the 
position of the corresponding point in 
another image?

• Camera geometry (motion): Given a set of 
corresponding points in two or more 
images, what are the camera matrices for 
these views?



The Euclidean (perspective) Structure-from-Motion Problem

Given m (internally) calibrated perspective images of n fixed 
points Pj we can write

Problem: estimate the m 3x4 matrices M
i

= [Ri ti] and
the n positions Pj from the mn correspondences pij .

2mn equations in 11m (or rather 5m)+3n unknowns

Overconstrained problem, that can be solved
using (non-linear) least squares!



The Euclidean Ambiguity of  Euclidean SFM

If Ri, ti, and Pj are solutions, 

So are Ri’, ti’, and Pj’, where

In fact, the absolute scale cannot be recovered since:

When the intrinsic parameters are known (normalized coordinates)

Euclidean ambiguity up to a similarity transformation. 



Euclidean motion from E (Longuet-Higgins, 1981)

• Given F computed from n > 7 point correspondences, and its 
SVD F= UWVT, compute E=U diag(1,1,0) VT.

• There are two solutions t’ = u3 and t’’ = -t’ to ETt=0.

• Define 
R’ = UWVT and R” = UWTVT where

(It is easy to check R’ and R” are rotations.) 

• Then [tx’]R’ = -E and [tx’]R” = E. Similar reasoning for t”.

• Four solutions. Only two of  them place the reconstructed
points in front of the cameras.
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Singular Value Decomposition

square roots of



Euclidean reconstruction. Mean relative error: 3.1%



Euclidean (= similarity) ambiguity



If P is unconstrained:
Projective ambiguity

  XQPQPXx  P
-1

 P



Projective ambiguity



Structure from motion
• Let us now look at simpler, affine cameras

center at
infinity



The Affine Structure-from-Motion Problem

Given m images of n fixed points P we can write

Problem: estimate the m 2x4 matrices M and
the n positions P from the mn correspondences p .

i

j ij

2mn equations in 8m+3n unknowns

Overconstrained problem, that can be solved
using (non-linear) least squares!

j



The Affine Ambiguity of Affine SFM

If M and  P are solutions, i j

So are M’  and  P’  wherei j

and

Q is an affine
transformation.

When the intrinsic parameters are unknown


