Introduction to computer vision X

Instructors: Jean Ponce and Matthew Trager jean.ponce@inria.fr, matthew.trager@cims.nyu.edu

TAs: Jiachen (Jason) Zhu and Sahar Siddiqui jiachen.zhu@nyu.edu, ss12414@nyu.edu

Slides will be available after class at: https://mtrager.github.io/introCV-fall2019/

Stereo

- Essential and fundamental matrices
- 8-point agorithm
- Rectification
- Triangulation
- Fusion algorithms

Structure from motion

- Problem definition
- Ambiguities
- Euclidean SFM from the essential matrix
- Affine SFM from two views
- Affine SFM from multiple views
- Projective SFM

Epipolar Constraint

• Potential matches for p have to lie on the corresponding epipolar line l'.

 Potential matches for p' have to lie on the corresponding epipolar line I.

 $\overrightarrow{Op}\cdot[\overrightarrow{OO'}\times\overrightarrow{O'p'}]=0$

Epipolar Constraint: Calibrated Case

$$\overrightarrow{Op} \cdot [\overrightarrow{OO'} \times \overrightarrow{O'p'}] = 0$$

$$p \cdot [t \times (\mathcal{R}p')] = 0 \quad \text{with} \begin{cases} p = (u, v, 1)^T \\ p' = (u', v', 1)^T \\ \mathcal{M} = (\text{Id } \mathbf{0}) \\ \mathcal{M'} = (\mathcal{R}^T, -\mathcal{R}^T t) \end{cases}$$

$$\overrightarrow{Essential Matrix}_{(\text{Longuet-Higgins, 1981})} \qquad p^T \mathcal{E}p' = 0 \quad \text{with} \quad \mathcal{E} = [t_{\times}]\mathcal{R}$$

Properties of the Essential Matrix

- \cdot E p' is the epipolar line associated with p'.
- $E^{T}p$ is the epipolar line associated with p.
- Ee'=0 and $E^{T}e=0$.
- E is singular.
- E has two equal non-zero singular values (Huang and Faugeras, 1989).

Epipolar Constraint: Uncalibrated Case

$$\hat{\boldsymbol{p}}^T \boldsymbol{\mathcal{E}} \, \hat{\boldsymbol{p}}' = 0$$

 $\boldsymbol{p} = \mathcal{K} \hat{\boldsymbol{p}}$
 $\boldsymbol{p}' = \mathcal{K}' \hat{\boldsymbol{p}}'$

$$\boldsymbol{p}^T \boldsymbol{\mathcal{F}} \boldsymbol{p}' = 0 \quad \text{with} \quad \boldsymbol{\mathcal{F}} = \boldsymbol{\mathcal{K}}^{-T} \boldsymbol{\mathcal{E}} \boldsymbol{\mathcal{K}}'^{-1}$$

Fundamental Matrix (Faugeras and Luong, 1992) Properties of the Fundamental Matrix

- F p' is the epipolar line associated with p'.
- $F^{T}p$ is the epipolar line associated with p.
- Fe'=0 and $F^{T}e=0$.
- F is singular.

The Eight-Point Algorithm (Longuet-Higgins, 1981)

$$\begin{pmatrix} u, v, 1 \end{pmatrix} \begin{pmatrix} F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33} \end{pmatrix} \begin{pmatrix} u' \\ v' \\ 1 \end{pmatrix} = 0$$

$$(uu', uv', u, vu', vv', v, u', v', 1) \begin{pmatrix} F_{11} \\ F_{12} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33} \end{pmatrix} = 0$$

$$\begin{pmatrix} uu', uv', u, vu', vv', v, u', v', 1 \end{pmatrix} \begin{pmatrix} F_{11} \\ F_{32} \\ F_{33} \\ F_{31} \\ F_{32} \\ F_{33} \end{pmatrix} = 0$$

$$\begin{pmatrix} u_1u'_1 & u_1v'_1 & v_1u'_1 & v_1v'_1 & v_1 & u'_1 & v'_1 \\ u_2u'_2 & u_2v'_2 & u_2 & v_2u'_2 & v_2u'_2 & v'_2 \\ u_3u'_3 & u_3v'_3 & u_3 & u'_3 & v'_3 \\ u_4u'_4 & u_4v'_4 & u_4u'_4 & v_4u'_4 & v'_4 \\ u_5u'_5 & u_5v'_5 & u_5 & v'_5v'_5 & v_5 & u'_5 & v'_5 \\ u_6u'_6 & u_6v'_6 & u_6 & v_6d'_6 & v_6d'_6 & v_6 & u'_6 & v'_6 \\ u_7u'_7 & u_7v'_7 & u_7 & v_7u'_7 & v_7v'_7 & v_7 & u'_7 & v'_7 \\ u_8u'_8 & u_8v'_8 & u_8 & v_8u'_8 & v_8v'_8 & v_8 & u'_8 & v'_8 \end{pmatrix} \begin{pmatrix} F_{11} \\ F_{12} \\ F_{13} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{31} \\ F_{31} \\ F_{32} \\ F_{32} \\ F_{33} \\ F_{31} \\ F_{32} \\ F_{32} \\ F_{33} \\ F_{31} \\ F_{31} \\ F_{32} \\ F_{33} \\ F_{31} \\ F_{31} \\$$

Problem with eight-point algorithm

250906.36 2692.28	183269.57 131633.03	7 921.81 3 176.27	200931.10	146766.13 302975.59	738.21 405.71	272.19 15.27	198.81 746.79	$\begin{pmatrix} F_{11} \\ F_{12} \\ F_{13} \end{pmatrix}$		$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$	
416374.23	871684.30	935.47	408110.89	854384.92	916.90	445.10	931.81	F_{01}		1	
48988.86	30401.76	410.27 5 57.89	416435.62 298604.57	374125.90 185309.58	893.65	465.99 846.22	418.65	F_{22}	= -	1	
164786.04	546559.67	7 813.17	1998.37	6628.15	9.86	202.65	672.14	F22		1	
116407.01	2727.75	5 138.89	169941.27	3982.21	202.77	838.12	19.64	- 23 E		1	
135384.58	75411.13	3 198.72	411350.03	229127.78	603.79	681.28	379.48	F 31		1	
								(F_{32})		(1)	

Poor numerical conditioning Can be fixed by rescaling the data

The Normalized Eight-Point Algorithm (Hartley, 1995)

• Center the image data at the origin, and scale it so the mean squared distance between the origin and the data points is 2 pixels: $q = T p_i$, $q'_i = T' p'_i$

• Use the eight-point algorithm to compute F from the points q_{i} and q'_{i} .

- Enforce the rank-2 constraint.
- Output $T^{T}F T'$.

Non-Linear Least-Squares Approach (Luong et al., 1993)

Minimize

$$\sum_{i=1}^{n} [d^2(\boldsymbol{p}_i, \mathcal{F} \boldsymbol{p}_i') + d^2(\boldsymbol{p}_i', \mathcal{F}^T \boldsymbol{p}_i)]$$

with respect to the coefficients of F, using an appropriate rank-2 parameterization.

Data courtesy of R. Mohr and B. Boufama.

